About the bootstrap

Dr David Odell and David Munroe, of Insureware, take
us through the use of the bootstrap

David Munroe

Dr David Odell

ave you ever had this experience? One
morning as you are about to leave the
house you realise you have forgotten
your keys. You look for them in the
usual places but can’t find them. You carefully
retrace your steps of the night before, look
beneath the couch cushions and under the bed
and they still don’t appear. By this time you are
getting more than a little tense, so you make a
conscious effort to calm down and think things
through. Since you have no clue where you put
the keys, you will try to reconstruct the process
by which you mislaid them. You take some
other object of a similar size, for example one
of your child’s toys, put it in the pocket where
you normally keep the keys and walk out
the front door, carefully wedging it so that it
doesn’t lock on you. Then re-enter your home,
pretending to unlock the door with Thomas the
Tank Engine. Making a conscious effort to be
in the same oblivious state of mind you were in
the night before, you casually throw the object
anywhere. Then, quickly reverting to your
anxious self, you go and search around the area
where it landed. Odds are you’ll find all sorts
of interesting things there which might even
include your keys, but just as likely it’s the last
place you look before going for the spare keys.
This, in a nutshell, is the bootstrap method.

The bootstrap isn’t a model. It’s what you do
when you have a question about some data
and no model to help answer it. It says, just do

something that’s random in the same way

(the bootstrap has a perfectly practical recipe
for doing this) and look at the results. It isn’t a
very good way to pinpoint your lost keys but
the statistical bootstrap can be a very effective
way to do something else. The bootstrap
doesn’t produce a good estimate of the mean
(that would be like the toy landing on the keys)
but it can help you measure the variability in an
estimate, in other words it might help you find
what room the keys are in.

The method was named and popularised by
Brad Efron in a 1979 paper in the Annals of
Statistics. There are many variants but at the
heart of them is the idea of supplementing

a dataset with a number of pseudo-datasets
formed by re-sampling from the dataset

(with replacement). A statistic of interest, for
example the mean, is calculated for the original
data. With a small dataset and no knowledge of
the underlying distribution, the question arises
as to how to compute a distribution for this
statistic. We might, for example, be required

to estimate the 99th percentile of the mean.
The bootstrap tells us to calculate the means
for each of the pseudo-datasets and use the
distribution of these to capture the distribution
of the mean.

The mean of the pseudo-data (177,004) is
different from the mean of the original data
(154,867) because, in the re-sampling, we are
permitted to pick the same number twice.

Here is a dataset - it is a paid loss array for a US Workers Compensation portfolio over the

11-year period 1977-1987:
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And here is the same dataset re-sampled (with replacement), a bootstrap pseudo-dataset.




Bootstrapping this one million times I find that
the 99th percentile of the mean is 192,310.
This is very nice; unfortunately it doesn’t
answer any of the questions I’d like to put to
these data. In fact it is completely irrelevant
because this is not a small sample from the
same population; each value in the triangle is
from a different population (distribution).

| decided to randomise my keys-finding
procedure by starting from any person
and any house ..., not just in my street,
but in the world!

If these 66 figures were, say, a random

sample of share transactions at a brokerage

in the course of a year and I wanted the 99th
percentile of the total annual commission, then
it would be relevant. In this case, however,

my problem is to do with forecasting on the
basis of a specifically structured set of data.
The pseudo-data above are of no use since the
structure (of real data) has been lost. To return
to the opening analogy, using this pseudo-data
to help understand the variability in a forecast
would be as if T had decided to randomise my
keys-finding procedure by starting from any
person and any house (with the same number of
rooms), not just in my street, but in the world!

Before we leave this example, it is worth
pointing out that the bootstrap exercise we’ve
just done is about the parameter uncertainty
and not the process variability, the parameter in
this case being the mean. If [ was interested in
the process variability I might try bootstrapping
the 75th percentile of the data (since there

are fewer than 100 data points it would be
meaningless to bootstrap the 99th percentile).

Here is another view of the original data:
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Figure 1

The coloured lines trace the paid losses for

a common underwriting year. Here we can
clearly see that there is a common development
pattern and that the level of payments in the tail
increases with each successive underwriting
year. We can also see that the size of the
payments in the first two development periods
is not a good indicator for the level in the tail.

So, let’s be clear on the problem before we see
whether and how the bootstrap can help us. Our
forecasting (reserving) problem is to estimate
the entries in the empty cells of the data square
above. We can assume that we already have a
method for doing this, but that this method only
produces means (best estimates) and possibly
standard deviations for the cells. What we want
the bootstrap for is to get the full distributions
of these numbers, or at least of their aggregate.
We don’t want the parameter uncertainties

for the means but the actual variability in the
amounts we are going to pay because only

this, which should incorporate both process
variability and parameter uncertainty, can give
an indication of the reserve risk.

What we want from the bootstrap is a way of
producing thousands of pseudo-datasets that
have the same basic structure as the original
but that are random in the same way as the
original. The bootstrap should enable us to

do this if we can separate the structure in the
data from the attendant process variability. We

then re-sample (with replacement) from the
process variability component and use this to
create a pseudo-dataset. Furthermore, we also
re-sample the process variability for the cells
in the forecast portion of the array so that our
resulting distribution is for the actual risk and
not just the parameter uncertainty. Simple!

There are a number of technical problems to
do with scaling for different parts of the array
which we will ignore in order to focus on

the key issue; that is, decomposing the data
into structure and process variability. If our
forecasting method is based on a model for the
data, we are bound to equate structure with the
fitted values created by the model.

So, in summary:

Data = Structure + Process Variability; or,
equivalently: Data = Fitted Model + Residual

The process variability (residuals) can be
bootstrapped (re-sampled) without any
distributional assumptions. We combine
re-sampled residuals with fitted values to
produce each bootstrap pseudo-dataset.
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As we did not correctly separate out the structure from the process variability, the bootstrap
sample pseudo-dataset (right) is almost structureless compared to the real data (left).




Everything hinges on getting the cut between structure and variability

right. This needs the precision of a good sushi chef.

Everything hinges on getting the cut between structure and variability right. This needs the
precision of a good sushi chef. If we cut too far into the variability, we’ll have incorrect means
and too little process variation and if we cut too far into the structure, we’ll have incorrect means
and too much process variation. Either way we’ll miss what we want, which is the precise
distribution(s) for the forecast(s). The bootstrap technique is only meaningful if the structure has
been correctly estimated (fitted) - the model has to be right.

Look at the two pseudo-datasets below. Each is derived by bootstrapping from a different model.

One of them is obviously failing to capture the variability we are interested in. Can we discover the

error in the way the associated model has cut the data?
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The pseudo-data on the left is so wobbly that it is hard to see it and the original data as both being

typical members of the same class.

Let’s look at smoothed histograms of
the variability which was re-sampled to
create these:
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(The difterence in scale of these graphs
is a result of the different methods used
and not otherwise relevant.) The shape
on the left with its two unbalanced
modes is cause for concern. But then
isn’t the point of the bootstrap that it

is non-parametric, we don’t expect to
have nice normal distributions?

This is true, but what if the negative
and positive residual values are
clustered in distinct parts of the array?
That would destroy the credibility of
the bootstrap by showing that the cut
had been made too far into the structure
side of the data.




When we plot the residuals against calendar year, we see that in fact this is
exactly what has occurred. The model used on the left is the Mack model
(equivalently, volume weighted average link ratios) and the one on the right is
a trend-and-volatility-based model from the Probabilistic Trend Family (PTF)
modelling framework.
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The identified (optimal) model in the Probabilistic Trend Family (PTF)

modelling framework fits a parsimonious set of parameters to all three directions,
development, accident, and calendar periods, as well as modelling the process
variance. The modelling framework, allows us to cut the data into the two parts,
structure and process variability, correctly. The trend structure in the data in the
three directions is depicted below. [The bottom right graph represents the variance
of the process variability (residuals) that have been tested to come from normal
distribution].
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It is no surprise that the identified parsimonious PTF model produces bootstrap
samples that resemble the original data since it captures the calendar year
trend structure, as well the structure in the other two directions. The weighted
standardised residuals are random (no structure) and all come from the same
distribution. Note major calendar year trend shifts in 1985-1986-1987.

We now give a second counter-example of cutting the structure incorrectly.

We saw previously that the Mack method did not remove all the structure by
calendar year. What if we use the bootstrap on the remaining noise? Will not the
pseudo-samples differ from the real data as before?

Again, the clearest way to answer this is a plot of the residuals versus calendar
year of the Mack method applied to the real data, and the bootstrap triangles.
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The uppermost residual plot is that
of the Mack method applied to the
real data. The other three residual
plots are those of the Mack method
applied to three bootstrap triangles
generated from the Mack method
(to the real data). It is obvious

that the structure versus calendar
observed in the original data
(uppermost), has been lost to a great
degree in the bootstrap samples.

A bootstrap pseudo-sample will
remove any structure still remaining
in the process variability (noise) as
measured by the Mack method.

The high positive residuals in the
latest calendar years are randomly
assigned to any calendar year!




We illustrate this by comparing
residual graphs of three bootstrap
samples from the identified optimal
PTF model with the residual graphs
of the real data. The model fitted to
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The four residual graphs below are based on fitting a two-away ANOVA model on a log scale
that removes (estimates) trends between every two contiguous development years and between
every two contiguous accident years, leaving any remaining structure visible by calendar year.
This model is a diagnostic model for testing the instability of calendar year trends (and should

not be used for forecasting).
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Figure 10

Spot the odd one out? The bootstrap sample (top right) from the Mack method fails to replicate the
calendar year trend changes - it has failed to act with the precision of a good sushi chef. The real
data is top left and the other two are two of the bootstrap samples generated from the identified
PTF model (above), and are indistinguishable from the real data.

The diagnostic use of the bootstrap:
create some bootstrap pseudo-datasets
and see if they replicate the features in
the real data.

‘We have just used the bootstrap as a diagnostic
tool for testing a model. To do this we create
one or a small number of bootstrap samples
from a model and then see whether these and
the original data share a family resemblance.
If not, the model has failed in some obvious
way to separate structure from process
variability (randomness).
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Figure 11

What about the distributional use of the
bootstrap? For the identified PTF model
above this is not needed since the weighted
standardized residuals are (tested) from a
normal distribution and the model itself
produces distributions for all forecast cells.

Most actuaries that use the Mack method and
bootstrapping do not in fact bootstrap the Mack
method! They actually bootstrap the residuals
of the Log-Linear Poisson model, and the noise
component used in the forecast portion of the
table is drawn from the parametric Inverse
Gamma distribution.

Left: The Log-Linear Poisson
residuals for the ABC data also
show obvious structure in the
calendar direction. As with the
Mack method, this is because
calendar trends were

not correctly accounted for in
the model.

The additional components have been carefully
tweaked to produce a standard deviation
compatible with that found in the basic

Mack method.

The Log-Linear Poisson model does not have
the same residuals as the Mack method and it
is not the same model, though there are some
interesting relationships.

There is no a priori reason to assume that

the distribution found in this way has any
connection to the data. To return to the sushi
chef analogy, it doesn’t matter how you cut up
the fish if what ends up on the plate is mostly
surimi, a.k.a. seafood extender.

Parameter uncertainty and process
variability

We decompose data into trend structure (in
the three directions) and process variability
(randomness). These are two different sources
of variability for which both must be handled
correctly and with the correct terminology.

The parsimonious estimated trend parameters
have associated uncertainties, and the
remaining (random) variation in the outcomes
is due to the variation in the underlying process
that cannot be eliminated or reduced, since it is
a component of the generating process. All we
can do is measure its distribution(s), and make
decisions accordingly.

Predictions of variability (probability
distributions) in the future incorporate both
parameter uncertainty and process variability.

Furthermore, it should be clear that we must be
interested in more than just ‘an answer’, such
as reserves or ultimates by accident period.

In respect of Market Value Margins, cost of
capital calculations, T-VaRs and VaRs we also
need the probability distributions of the liability
stream and their correlations by calendar
period. These are conditional on an explicit set
of assumptions that are transparent, auditable
and can be monitored in a probabilistic
framework.

To find out more about bootstrap techniques,
the Mack and related methods included in the
Extended Link Ratio Family (ELRF) modelling
framework, the PTF and MPTF modelling
frameworks, and all aspects of managing long
tail liability risks that are relevant to

Solvency 11, please visit the Insureware
website: www.insureware.com.

[ _

» Insureware

Software Solutions and eConsulting for P&C Insurance




	ActuaryAdNov09Web_p1
	ActuaryAdNov09Web_p2
	ActuaryAdNov09Web_p3
	ActuaryAdNov09Web_p4
	ActuaryAdNov09Web_p5
	ActuaryAdNov09Web_p6

