
About the bootstrap
ave you ever had this experience? One 
morning as you are about to leave the 
house you realise you have forgotten 
your keys. You look for them in the 

usual places but can’t fi nd them. You carefully 
retrace your steps of the night before, look 
beneath the couch cushions and under the bed 
and they still don’t appear. By this time you are 
getting more than a little tense, so you make a 
conscious effort to calm down and think things 
through. Since you have no clue where you put 
the keys, you will try to reconstruct the process 
by which you mislaid them. You take some 
other object of a similar size, for example one 
of your child’s toys, put it in the pocket where 
you normally keep the keys and walk out 
the front door, carefully wedging it so that it 
doesn’t lock on you. Then re-enter your home, 
pretending to unlock the door with Thomas the 
Tank Engine. Making a conscious effort to be 
in the same oblivious state of mind you were in 
the night before, you casually throw the object 
anywhere. Then, quickly reverting to your 
anxious self, you go and search around the area 
where it landed. Odds are you’ll fi nd all sorts 
of interesting things there which might even 
include your keys, but just as likely it’s the last 
place you look before going for the spare keys. 
This, in a nutshell, is the bootstrap method.
The bootstrap isn’t a model. It’s what you do 
when you have a question about some data 
and no model to help answer it. It says, just do 

something that’s random in the same way
(the bootstrap has a perfectly practical recipe 
for doing this) and look at the results. It isn’t a 
very good way to pinpoint your lost keys but 
the statistical bootstrap can be a very effective 
way to do something else. The bootstrap 
doesn’t produce a good estimate of the mean 
(that would be like the toy landing on the keys) 
but it can help you measure the variability in an 
estimate, in other words it might help you fi nd 
what room the keys are in.
The method was named and popularised by 
Brad Efron in a 1979 paper in the Annals of 
Statistics. There are many variants but at the 
heart of them is the idea of supplementing 
a dataset with a number of pseudo-datasets 
formed by re-sampling from the dataset 
(with replacement). A statistic of interest, for 
example the mean, is calculated for the original 
data. With a small dataset and no knowledge of 
the underlying distribution, the question arises 
as to how to compute a distribution for this 
statistic. We might, for example, be required 
to estimate the 99th percentile of the mean. 
The bootstrap tells us to calculate the means 
for each of the pseudo-datasets and use the 
distribution of these to capture the distribution 
of the mean.
The mean of the pseudo-data (177,004) is 
different from the mean of the original data 
(154,867) because, in the re-sampling, we are 
permitted to pick the same number twice.

And here is the same dataset re-sampled (with replacement), a bootstrap pseudo-dataset.
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Here is a dataset - it is a paid loss array for a US Workers Compensation portfolio over the 
11-year period 1977-1987:



then re-sample (with replacement) from the 
process variability component and use this to 
create a pseudo-dataset. Furthermore, we also 
re-sample the process variability for the cells 
in the forecast portion of the array so that our 
resulting distribution is for the actual risk and 
not just the parameter uncertainty. Simple!
There are a number of technical problems to 
do with scaling for different parts of the array 
which we will ignore in order to focus on 
the key issue; that is, decomposing the data 
into structure and process variability. If our 
forecasting method is based on a model for the 
data, we are bound to equate structure with the 
fi tted values created by the model.
So, in summary:  
Data = Structure + Process Variability; or, 
equivalently: Data = Fitted Model + Residual 
The process variability (residuals) can be 
bootstrapped (re-sampled) without any 
distributional assumptions. We combine
re-sampled residuals with fi tted values to 
produce each bootstrap pseudo-dataset.

So, let’s be clear on the problem before we see 
whether and how the bootstrap can help us. Our 
forecasting (reserving) problem is to estimate 
the entries in the empty cells of the data square 
above. We can assume that we already have a 
method for doing this, but that this method only 
produces means (best estimates) and possibly 
standard deviations for the cells. What we want 
the bootstrap for is to get the full distributions 
of these numbers, or at least of their aggregate. 
We don’t want the parameter uncertainties 
for the means but the actual variability in the 
amounts we are going to pay because only 
this, which should incorporate both process 
variability and parameter uncertainty, can give 
an indication of the reserve risk.
What we want from the bootstrap is a way of 
producing thousands of pseudo-datasets that 
have the same basic structure as the original 
but that are random in the same way as the 
original. The bootstrap should enable us to 
do this if we can separate the structure in the 
data from the attendant process variability. We 

Bootstrapping this one million times I fi nd that 
the 99th percentile of the mean is 192,310.
This is very nice; unfortunately it doesn’t 
answer any of the questions I’d like to put to 
these data. In fact it is completely irrelevant 
because this is not a small sample from the 
same population; each value in the triangle is 
from a different population (distribution).
I decided to randomise my keys-fi nding 
procedure by starting from any person 
and any house ..., not just in my street, 
but in the world! 
If these 66 fi gures were, say, a random 
sample of share transactions at a brokerage 
in the course of a year and I wanted the 99th 
percentile of the total annual commission, then 
it would be relevant. In this case, however, 
my problem is to do with forecasting on the 
basis of a specifi cally structured set of data. 
The pseudo-data above are of no use since the 
structure (of real data) has been lost. To return 
to the opening analogy, using this pseudo-data 
to help understand the variability in a forecast 
would be as if I had decided to randomise my 
keys-fi nding procedure by starting from any 
person and any house (with the same number of 
rooms), not just in my street, but in the world! 
Before we leave this example, it is worth 
pointing out that the bootstrap exercise we’ve 
just done is about the parameter uncertainty 
and not the process variability, the parameter in 
this case being the mean. If I was interested in 
the process variability I might try bootstrapping 
the 75th percentile of the data (since there 
are fewer than 100 data points it would be 
meaningless to bootstrap the 99th percentile).
Here is another view of the original data:

The coloured lines trace the paid losses for 
a common underwriting year. Here we can 
clearly see that there is a common development 
pattern and that the level of payments in the tail 
increases with each successive underwriting 
year. We can also see that the size of the 
payments in the fi rst two development periods 
is not a good indicator for the level in the tail.

As we did not correctly separate out the structure from the process variability, the bootstrap 
sample pseudo-dataset (right) is almost structureless compared to the real data (left). 

Advertisement

By bootstrapping the original 
triangle to the left we 
erroneously assumed that 
all the values came from the 
same population - that is no 
structure in the data.  The real 
triangle and the bootstrap 
triangle are then plotted on a 
log-scale versus development 
year below:

Figure 1

Figure 2

Figure 3



Let’s look at smoothed histograms of 
the variability which was re-sampled to 
create these:

(The difference in scale of these graphs 
is a result of the different methods used 
and not otherwise relevant.) The shape 
on the left with its two unbalanced 
modes is cause for concern. But then 
isn’t the point of the bootstrap that it 
is non-parametric, we don’t expect to 
have nice normal distributions?
This is true, but what if the negative 
and positive residual values are 
clustered in distinct parts of the array? 
That would destroy the credibility of 
the bootstrap by showing that the cut 
had been made too far into the structure 
side of the data.

Everything hinges on getting the cut between structure and variability right. This needs the 
precision of a good sushi chef. If we cut too far into the variability, we’ll have incorrect means 
and too little process variation and if we cut too far into the structure, we’ll have incorrect means 
and too much process variation. Either way we’ll miss what we want, which is the precise 
distribution(s) for the forecast(s). The bootstrap technique is only meaningful if the structure has 
been correctly estimated (fi tted) - the model has to be right. 
Look at the two pseudo-datasets below. Each is derived by bootstrapping from a different model. 
One of them is obviously failing to capture the variability we are interested in. Can we discover the 
error in the way the associated model has cut the data?

The pseudo-data on the left is so wobbly that it is hard to see it and the original data as both being 
typical members of the same class.
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Figure 4

Everything hinges on getting the cut between structure and variability 
right. This needs the precision of a good sushi chef.

Figure 5



When we plot the residuals against calendar year, we see that in fact this is 
exactly what has occurred. The model used on the left is the Mack model 
(equivalently, volume weighted average link ratios) and the one on the right is 
a trend-and-volatility-based model from the Probabilistic Trend Family (PTF) 
modelling framework.
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The uppermost residual plot is that
of the Mack method applied to the 
real data. The other three residual 
plots are those of the Mack method 
applied to three bootstrap triangles 
generated from the Mack method 
(to the real data). It is obvious 
that the structure versus calendar 
observed in the original data 
(uppermost), has been lost to a great 
degree in the bootstrap samples. 
A bootstrap pseudo-sample will 
remove any structure still remaining 
in the process variability (noise) as 
measured by the Mack method.
The high positive residuals in the 
latest calendar years are randomly 
assigned to any calendar year!

The identifi ed (optimal) model in the Probabilistic Trend Family (PTF) 
modelling framework fi ts a parsimonious set of parameters to all three directions, 
development, accident, and calendar periods, as well as modelling the process 
variance. The modelling framework, allows us to cut the data into the two parts, 
structure and process variability, correctly.  The trend structure in the data in the 
three directions is depicted below. [The bottom right graph represents the variance 
of the process variability (residuals) that have been tested to come from normal 
distribution].

We now give a second counter-example of cutting the structure incorrectly. 
We saw previously that the Mack method did not remove all the structure by 
calendar year. What if we use the bootstrap on the remaining noise? Will not the 
pseudo-samples differ from the real data as before? 
Again, the clearest way to answer this is a plot of the residuals versus calendar 
year of the Mack method applied to the real data, and the bootstrap triangles.

Figure 6

Figure 7

Figure 8

It is no surprise that the identifi ed parsimonious PTF model produces bootstrap 
samples that resemble the original data since it captures the calendar year 
trend structure, as well the structure in the other two directions. The weighted 
standardised residuals are random (no structure) and all come from the same 
distribution. Note major calendar year trend shifts in 1985-1986-1987.



We illustrate this by comparing 
residual graphs of three bootstrap 
samples from the identifi ed optimal 
PTF model with the residual graphs
of the real data. The model fi tted to 
each triangle has a single parameter
in each direction.
Note the four sets of residual graphs 
are indistinguishable.
This confi rms that the identifi ed PTF 
model has separated the trend structure 
from the random variation accurately.
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Figure 9



Spot the odd one out? The bootstrap sample (top right) from the Mack method fails to replicate the 
calendar year trend changes - it has failed to act with the precision of a good sushi chef. The real 
data is top left and the other two are two of the bootstrap samples generated from the identifi ed 
PTF model (above), and are indistinguishable from the real data.

What about the distributional use of the 
bootstrap? For the identifi ed PTF model 
above this is not needed since the weighted 
standardized residuals are (tested) from a 
normal distribution and the model itself 
produces distributions for all forecast cells. 
Most actuaries that use the Mack method and 
bootstrapping do not in fact bootstrap the Mack 
method! They actually bootstrap the residuals 
of the Log-Linear Poisson model, and the noise 
component used in the forecast portion of the 
table is drawn from the parametric Inverse 
Gamma distribution. 

The additional components have been carefully 
tweaked to produce a standard deviation 
compatible with that found in the basic
Mack method. 
The Log-Linear Poisson model does not have 
the same residuals as the Mack method and it 
is not the same model, though there are some 
interesting relationships.
There is no a priori reason to assume that 
the distribution found in this way has any 
connection to the data. To return to the sushi 
chef analogy, it doesn’t matter how you cut up 
the fi sh if what ends up on the plate is mostly 
surimi, a.k.a. seafood extender. 
Parameter uncertainty and process 
variability
We decompose data into trend structure (in 
the three directions) and process variability 
(randomness). These are two different sources 
of variability for which both must be handled 
correctly and with the correct terminology. 
The parsimonious estimated trend parameters 
have associated uncertainties, and the 
remaining (random) variation in the outcomes 
is due to the variation in the underlying process 
that cannot be eliminated or reduced, since it is 
a component of the generating process. All we 
can do is measure its distribution(s), and make 
decisions accordingly.
Predictions of variability (probability 
distributions) in the future incorporate both 
parameter uncertainty and process variability.  
Furthermore, it should be clear that we must be 
interested in more than just ‘an answer’, such 
as reserves or ultimates by accident period. 
In respect of Market Value Margins, cost of 
capital calculations, T-VaRs and VaRs we also 
need the probability distributions of the liability 
stream and their correlations by calendar 
period. These are conditional on an explicit set 
of assumptions that are transparent, auditable 
and can be monitored in a probabilistic 
framework.
To fi nd out more about bootstrap techniques, 
the Mack and related methods included in the 
Extended Link Ratio Family (ELRF) modelling 
framework, the PTF and MPTF modelling 
frameworks, and all aspects of managing long 
tail liability risks that are relevant to
Solvency II, please visit the Insureware 
website: www.insureware.com.

Left: The Log-Linear Poisson 
residuals for the ABC data also 
show obvious structure in the 
calendar direction. As with the 
Mack method, this is because 
calendar trends were
not correctly accounted for in
the model.

Advertisement

The diagnostic use of the bootstrap: 
create some bootstrap pseudo-datasets 
and see if they replicate the features in 
the real data.
We have just used the bootstrap as a diagnostic 
tool for testing a model. To do this we create 
one or a small number of bootstrap samples 
from a model and then see whether these and 
the original data share a family resemblance.
If not, the model has failed in some obvious 
way to separate structure from process 
variability (randomness). 

(Figure 11)

The four residual graphs below are based on fi tting a two-away ANOVA model on a log scale 
that removes (estimates) trends between every two contiguous development years and between 
every two contiguous accident years, leaving any remaining structure visible by calendar year. 
This model is a diagnostic model for testing the instability of calendar year trends (and should 
not be used for forecasting). 

Figure 10

Figure 11
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