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ABSTRACT
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series and econometric analysis to Australian inflation, share market and interest rate data. It considers unit
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stochastic investment models.
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11..  IINNTTRROODDUUCCTTIIOONN

1.1  The main aim of this paper is to apply some of the techniques of modern time
series and econometric analysis to analyse investment data in order to better understand the
nature of long run relationships in investment series typically used in stochastic investment
models. These relationships are fundamental to the structure of any model to be used in
actuarial applications. The analysis is based on Australian data. For other stochastic
investment modelling studies for actuarial applications that have investigated such
relationships refer to Wilkie (1986, 1995) and Thomson (1996).

1.2  The paper attempts to identify and address fundamental issues that need to be
considered before developing a particular stochastic investment model. It has identified many
structural features of investment models that should be included in such a model. Many of
these features are not found in published stochastic investment models for actuarial
applications. The paper does not present a stochastic investment model. The detail required
for a stochastic investment model will depend on the application.

1.3  Transfer functions were used to fit models to Australian investment data. These
were found not to be appropriate for investment modelling analysis for the Australian asset
returns series data since there was evidence of feedback relationships between many of the
series. State space models were then fitted to the asset returns data and the inflation series
allowing for feedback between inflation and asset class returns. The fitted models are
reported in this paper.
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1.4  The analysis in this paper uses quarterly data. Stochastic investment models are
used in practice to establish strategic asset allocations and to examine solvency and capital
adequacy. Long run asset allocation strategies are often determined using an annual model on
the assumption that cash flows occur at annual intervals. In practice this will be a crude
approximation to the timing of cash flows and a higher frequency model will be preferred.
Similarly the capital requirements for meeting a solvency test will be much less stringent
when solvency is tested at annual time intervals than at quarterly intervals.

1.5  There are many important issues in stochastic investment modelling that require
further investigation. These include modelling structural changes that have occurred in the
economy using regime-switching models (Harris, 1997, Garcia and Perron, 1996 and van
Norden and Vigfusson, 1996) and allowing for other time varying components of the series
such as heteroscedasticity. Parameter estimation and stability of parameters require further
investigation. Parameter and model uncertainty also needs to be incorporated.

1.6  Structural time series models provide a framework for analysing and developing
stochastic investment models. Such models can be developed using a state space formulation.
Such an approach provides a number of significant advantages over more dated time series
techniques. These are:

a) Models reflect the important structural characteristics of the data.
b) Model parameters are readily interpretable.
c) Feedback mechanisms (bi-directional causality) are included.
d) Stationarity does not have to be assumed.
e) On-line model maintenance and updating on receipt of additional information.

Further research is required in this area. It is hoped that this paper will provide a foundation
for that research.

22..  DDAATTAA

2.1  As far as possible, the structure of a model should be consistent with validated or
widely accepted economic and financial theory. Often the theory will rely on empirical data
for justification and the results from testing the theory will be inconclusive. A statistical
analysis of historical data will also provide useful insights into the features of past experience
that the model will need to capture. The model structure should be consistent with historical
data. Parameter estimation will usually be based on historical data. Since the model will be
used for projection into the future a greater weight may be given to the most recent data.

2.2  The data used for the empirical analysis in this research were taken from the
Reserve Bank of Australia Bulletin database. The study uses quarterly data in contrast to most
other studies in this area that use annual data. The reasons for using quarterly data, rather than
monthly or some other higher frequency, is that this is the highest frequency for which many
of the main economic and investment series are available. It is also a frequency that is suited
to most practical applications. A quarterly model will allow the results of financial analysis
and projections to be reviewed on a more frequent basis.

2.3  Different series are available over different time periods. The longest time period
for which data were available on a quarterly basis for all of the financial and economic series
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was from September 1969. Individual series were available for differing time periods. The
series considered were Consumer Price Index - All groups (CPI), the All Ordinaries Share
Price Index (SPI), Average Weekly Earnings - adult males (AWE), share dividend yields, 90
day bank bill yields, 2 year Treasury bond yields, 5 year Treasury bond yields, and 10 year
Treasury bond yields. An index of dividends was constructed from the dividend yield and the
Share Price Index series. Logarithms and differences of the logarithms are used in the analysis
of the CPI, SPI, AWE and dividends. The differences in the logarithms of the level of a series
are the continuously compounded equivalent growth rates of the series.

2.4  Appendix A sets out summary statistics for the series used. It is important to note
that a number of the series can not be assumed to be independent and identically distributed
normal variables. Although the data are not actual investment returns, since they are interest
rates and indices, they do suggest that the normal distribution assumptions of mean-variance
models often used in determining optimal asset allocation strategies should at least be
examined before using such models.

33..  UUNNIITT  RROOOOTTSS  AANNDD  SSTTAATTIIOONNAARRYY  SSEERRIIEESS

3.1  Many of the series used in stochastic investment modelling are non-stationary.
That is their mean, variance and auto-covariances may depend on time. For example the level
of the Consumer Price Index, the level of the Share Price Index and the level of a dividend
index can be seen to be non-stationary by simple inspection of a time series plot. It is less
clear whether or not interest rates have stationary distributions and this cannot easily be
determined by inspection of a time series plot. Rates of changes in indices or rates of return
have been used in stochastic investment models and this might be justified because they can
be considered as “natural” variables to use. In the case where the variance depends on time
then the use of a logarithmic transform may result in a stationary series.

3.2  The level of the Consumer Price Index, the level of the Share Price Index and the
level of a dividend index are non-stationary. Their expected value clearly depends on time.
This has lead researchers to difference the data in order to obtain a stationary series for
modelling. Wilkie (1986) and Carter (1991) used differenced data, as does Harris (1994,
1995) for equity and inflation series. In Carter (1991) the order of differencing was decided
using more traditional time series techniques based on the sample autocorrelations.
FitzHerbert (1992) fits a deterministic trend to various index levels instead of taking
differences. Neither FitzHerbert (1992) nor Harris (1994, 1995) conduct formal tests for
stationarity of the series used in their models.

3.3  If the level of a series is non-stationary but the difference of the series is
stationary then the series is said to contain a “unit root”, be “integrated or order 1”, or be
“difference stationary”. The following outline of the concept of a unit root is based on Holden
and Perman (1994). Consider the first order autoregressive process

.... 1, 0, 1,- ....,   t, xx t1tt =+= −ρ
where εt is a sequence of independent and identically distributed random variables with mean
zero and variance σ2 and |ρ|<1. Define the lag operator L as Lxt=xt-1 and write

ttt1tt x)L1(Lxxxx ρρρ −=−=− −
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3.5  Since the expected value, variance and autocovariance do not depend on time the

process is stationary provided |ρ|<1. Note that we can write ttx)L(f =  where f(L)=1-ρL is  a
linear function of L with root given by L=1/ρ.

3.6  The function f(L) has a unit root when ρ=1. In this case, assuming the process
starts at time t=0, we have
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and the process is no longer stationary. However, if we take differences of the series then
these will be stationary. Hence the process is said to be “difference stationary”.

3.7  It is important to understand that the existence of unit roots determines the nature
of the trends in the series. If a series contains a unit root then the trend in the series is
stochastic and shocks to the series will be permanent. In the case above with ρ=1 the level of
the series is an accumulation of past random shocks. If the series does not contain a unit root
then the series is “trend stationary”. The trend in the series will be deterministic and shocks to
the series will be transitory. This has major implications for investment models in actuarial
applications.

3.8  The other aspect of unit roots is that if they exist in a series and differences are
not used in model fitting and parameter estimation then the statistical properties of the
parameter estimates for the model will not be standard. The use of standard results for model
identification and parameter estimation can result in an incorrect model structure and
unreliable parameter estimates. Insignificant parameters are more likely to be accepted as
being significant. These issues are discussed in Holden and Perman (1994).

3.9  These are all significant reasons that make testing for unit roots in a series for use
in developing an investment model critical. Formal statistical tests for unit roots have been
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developed over the past decade in the econometric literature. Unit root tests are described in
many articles and books including Dickey and Fuller (1979) and Mills (1993). These
procedures are implemented in various statistical and econometric packages such as
SHAZAM (1993).

3.10  In order to test for unit roots in the series xt the following regressions are fitted:

t1tt xx ++= −ρα
(1)

and

t1tt xtx +++= −ρβα
(2)

where εt are assumed to be independent and identically distributed.

3.11  These regressions are often written in the equivalent form

t1t1ttt x)1(xxx +−+=−=∆ −− ρα

t1t1ttt x)1(txxx +−++=−=∆ −− ρβα
in which case they are referred to as Dickey-Fuller regressions (Dickey and Fuller, 1979,
1981).

3.12  If the value of ρ is equal to one and α is non-zero then xt is integrated or order 1
and (1) defines xt as a random walk around a linear time trend and (2) defines xt as a random
walk around a non-linear (quadratic) time trend. This can be seen by substituting ρ= 1 and
rearranging to get:
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3.13  If the εt are not i.i.d. then the following regressions, referred to as augmented
Dickey-Fuller regressions, are used:
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(4)
where p is selected to ensure the errors are uncorrelated. Note that α1 = 1-ρ. These will be the
regressions used in this paper to examine Australian data.

3.14  The procedure for testing for unit roots and determining the order of integration
uses the t-statistic of the coefficient α1 of xt-1 in the regressions given by (3) and (4). The null
hypothesis is that the series is non-stationary with α1 = 0 (i.e. ρ = 1) and the alternative is that
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α1 < 0. If the null is rejected then this is evidence that xt is a stationary series. If the null is not
rejected then differences of the series are taken and the differences tested for a unit root.
When the null is eventually rejected the level of differencing required to reject the null
determines the order of integration of the series. Usually this requires at most one order of
differencing for financial and economic series.

3.15  The critical values used for testing for a unit root depend on the assumed
underlying data generating model for the null hypothesis. If both α0 and α2 are zero then the t-
statistic under the null hypothesis for the regressions in (3) and (4) has a non-standard
distribution (Dickey and Fuller, 1979) and is compared with the table of critical values found
in Fuller (1976, p. 373). If α0 is non-zero and α2 is zero then the test statistic for regression
(4) is non-standard but is standard normal for regression (3). If both α0 and α2 are non-zero
then the limiting distribution for the test statistics in both regression (3) and (4) is standard
normal.

3.16  Dickey and Fuller (1981) provide critical values for a range of F test statistics
based on residual sums of squares for

φ1 using Equation (3) with Null α0=0, α1=0
φ2 using Equation (4) with Null α0=0, α2=0, α1=0
φ3 using Equation (4) with Null α0≠0, α2=0, α1=0

3.17  Given the above, it is necessary to use a sequential procedure to determine
critical values for testing for unit roots. Holden and Perman (1994) suggest such a procedure
for testing for unit roots. The following is a summary of the main steps in this procedure:

Step 1: Estimate the regression (4).

Step 2: Use φ3 and critical values from Dickey and Fuller (1981) (with α0≠0) to test the null
hypothesis α2=0, α1=0 against the alternative hypothesis α2≠0 or α1≠0. If the null is not
rejected then go to Step 5.

Step 3: Now it is necessary to determine if α2≠0, α1=0, or α2=0, α1≠0 or α2≠0, α1≠0. Test for
α1=0 using the t statistic from step 1 and standard normal tables. If this null is not rejected
then conclude that α2≠0, α1=0 and the series has a unit root and non-linear trend and stop. If
the null is rejected then proceed to the next step.

Step 4: The null is rejected in Step 3. There is no unit root and the series is stationary. A
conventional t-test for α2=0 is used to test for a trend. If this null is rejected then the series is
stationary around a linear trend and the process stops. A conventional t-test is used to test for
a constant α0≠0.

Step 5: If in Step 2 the null is not rejected then the series has a unit root with no trend and
possibly with drift. The unit root can be confirmed using the non-standard critical values for
the null α1=0. Non-zero drift is tested for in step 6.

Step 6: To test for non-zero drift use φ2 and the Dickey and Fuller (1981) critical values. If the
null is not rejected then the evidence suggests that the series is a random walk without drift. If
the null is rejected then the series is a random walk with drift. Finally proceed to step 7.
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Step 7: Regression (3) is used and φ1 used to test the null α0=0, α1=0. This will confirm the
results of earlier steps.

3.18  Table 1 sets out the unit root test statistics using the augmented Dickey-Fuller
procedure for Australian quarterly data over the period September 1969 to December 1994.

Insert Table 1 about here.

3.19  Table 2 gives the parameter estimates and t statistics for regressions (3) and (4)
for this data.

Insert Table 2 about here

3.20 Applying the procedure to the unit root test statistics in Tables 1 and 2 gives the
following results:

3.20.1 Logarithm of the Consumer Price Index
3.20.1.1  For the variable logCPI, the logarithm of the Consumer Price Index, φ3

does not reject the null hypothesis α0≠0, α2=0, α1=0 so the series has a unit root. φ1 rejects the
null α0=0, α1=0 suggesting the drift is significant. This is confirmed by the regression (3)
where the estimate of α0 is 0.0244 with a t statistic of 2.94 which is significant at the 0.4%
level.

3.20.1.2 For the variable ∆LogCPI, the first difference of logCPI, φ3 rejects the
null hypothesis α0≠0, α2=0, α1=0 for the differences. The τ2 test statistic rejects the
hypothesis that α1=0 so there is evidence that the differences are stationary.

3.20.1.3 This analysis suggests that the logarithm of the CPI is integrated of
order 1 and differences in the logarithm of the CPI are a stationary series.

3.20.2 Logarithm of the Share Price Index
3.20.2.1 For  the variable LogSPI, the logarithm of the Share Price Index, φ3

does not reject the null hypothesis α0≠0, α2=0, α1=0 so the series has a unit root with no
trend. φ2 does not reject the null α0=0, α2=0, α1=0 so that this is evidence of no drift. Using
the more powerful test with φ1 does not reject the null α0=0, α1=0. From the regression (3) the
estimate of α0 is 0.0547 with a t statistic of 0.52 which is not significant.

3.20.2.2. For ∆LogSPI, φ3 rejects the null hypothesis that α0≠0, α2=0, α1=0 for
the differences. The τ2 test statistic rejects the hypothesis that α1=0 so there is evidence that
the differences are stationary. From regression (4) the estimate of α0 is 0.0128 and of α2 is
0.0002 and neither of these is significant. We should not however conclude that the expected
return on the SPI is zero. The standard statistical testing procedure used for unit roots is not
necessarily powerful enough to differentiate between a small positive expected return and a
zero return. The SPI should have a positive expected return for the index to grow over time.
In this case the variability in the growth rate is high and the statistical test is not powerful
enough to differentiate a small positive return from a zero return.
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3.20.2.3 Based on these results we conclude that the logarithm of the SPI is
integrated of order 1 and differences in the logarithm of the SPI are a stationary series.
Although the statistical results suggest that the drift in the difference of log(SPI) is not
significantly different from zero, we would not expect α0 to be zero from an economic point
of view. The variability in equity returns is too great to confirm a statistically small positive
return different from zero.

3.20.3 Logarithm of Average Weekly Earnings
3.20.3.1 Now consider the variable LogAWE, the logarithm of Average Weekly

Earnings. The test statistic φ3 does not reject the null hypothesis α0≠0, α2=0, α1=0 so the
series has a unit root with no trend. φ2 does not reject the null α0=0, α2=0, α1=0 so this does
not reject the zero drift hypothesis. Using the more powerful test with φ1 does reject the null
α0=0, α1=0 suggesting that the drift is significant. From the regression (3) the estimate of α0

is 0.1182 with a t statistic of 3.04 which confirms this.

3.20.3.2 For ∆LogAWE, φ3 does not reject the null hypothesis α0≠0, α2=0, α1=0
for the differences which suggests that the differences have a unit root. However the τ2 test
statistic rejects the hypothesis that α1=0 and this is evidence that the differences are
stationary. Note that if the differences in the logarithm of AWE are not stationary then this
means that a random shock to the continuously compounding growth rate of AWE would be
permanent. A model with this feature would not be sensible since it would allow the
continuously compounding growth rate to become arbitrarily large or small.

3.20.3.3. Thus, the logarithm of AWE is most likely integrated of order 1
although the statistical tests suggest it could be of higher order. From an economic
perspective, if the logarithm of the CPI is assumed to be integrated of order 1, then the
logarithm of AWE should also be integrated of order 1. A higher order of integration of
logAWE than of logCPI would mean that these series could not be linked, as economic
reasoning would suggest.

3.20.4 Logarithm of the Share Index Dividend Series
3.20.4.1 For LogSDiv, the logarithm of the Share Index Dividend Series, the test

statistic φ3 does not reject the null hypothesis α0≠0, α2=0, α1=0 so the series has a unit root
with no trend. φ2 does not reject the null α0=0, α2=0, α1=0 so this does not reject the zero drift
hypothesis. Using the more powerful test with φ1 does not reject the null α0=0, α1=0
suggesting that the drift is not significant. From the regression (3) the estimate of α0 is 0.0940
with a t statistic of 1.188 which confirms this.

3.20.4.2 For the differences in the logarithm of the Share Index Dividend Series,
∆LogSDiv, the test statistic φ3 does reject the null hypothesis α0≠0, α2=0, α1=0 which is
evidence that the differences in the series are stationary without trend. The τ2 test statistic
rejects the hypothesis that α1=0 so this is further evidence that the differences are stationary.

3.20.4.3 We conclude that the logarithm of the dividend series is integrated of
order 1 and the differences in the series have no drift.
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3.20.5 Dividend yields on the Share Price Index
3.20.5.1 For SDyields, the Dividend yields on the Share Price Index, φ3 does not

reject the null hypothesis α0≠0, α2=0, α1=0 so the series has a unit root with no trend. φ2 does
not reject the null α0=0, α2=0, α1=0 so this does not reject the zero drift hypothesis. Using the
more powerful test with φ1 does not reject the null α0=0, α1=0 suggesting that the drift is not
significant. However regression (3) shows an estimate for α0 of 0.849 and this is significant.

3.20.5.2 For the differences, ∆Sdyields, the test statistics φ3 does reject the null
hypothesis α0≠0, α2=0, α1=0 for the differences of the series which is evidence that the
differences are stationary. The τ2 test statistic rejects the hypothesis that α1=0 so this is further
evidence that the differences are stationary.

3.20.5.3 Thus it appears that the dividend yield series is integrated of order 1
and the differences in the series are stationary with zero drift. Clearly this conclusion means
that dividend yields can drift to arbitrarily large or small values. For the historical data set
used for the statistical tests, we do not conclude that dividend yields are mean-reverting as
might generally be expected. The tests used here do not have the power to detect a close to
stationary model versus a non-stationary model for this series.

3.20.6 Interest Rates
3.20.6.1 For the interest rate series, BB90 (90 day bank bill yields), TB2 (2 year

Treasury bond yields), TB5 (5 year Treasury bond yields), and TB10 (10 year Treasury bond
yields), the same test statistics are significant for all of the interest rate series. φ3 does not
reject the null hypothesis α0≠0, α2=0, α1=0 so this is evidence that each of the series has a
unit root with no trend. φ2 does not reject the null α0=0, α2=0, α1=0 so this does not reject the
zero drift hypothesis. Using the more powerful test with φ1 does not reject the null α0=0, α1=0
suggesting that the drift is not significant.

3.20.6.2 For the differences in the interest rate series, ∆BB90, ∆TB2, ∆TB5 and
∆TB10, φ3 does reject the null hypothesis α0≠0, α2=0, α1=0 for all interest rate series which is
evidence that the differences of each of the series is stationary without trend. The τ2 test
statistic rejects the hypothesis that α1=0 so this is further evidence that the differences of the
series are stationary.

3.20.6.3 Thus each of the interest rate series appears to be integrated of order 1
so the changes in yields are stationary with no drift. This means that interest rate levels can
drift to arbitrarily high, or low, levels over long time periods. This may not be considered a
satisfactory model of interest rates in practice. A regime switching model using the
techniques in Harris (1997), with a mean reverting regime for higher interest rates reflecting
government policy to control interest rate levels, may be a more realistic model. Even though
the interest rates could not be statistically distinguished from a random walk, if such a model
was adopted for interest rates then it would be necessary to consider a cointegrated model.
The issue of cointegration of interest rates and inflation rates is examined for this data in
section 4 of this paper.

3.21  Phillips and Perron (1988) have proposed non-parametric procedures for testing
for unit roots with more general assumptions concerning εt than the assumptions for the
Dickey-Fuller and augmented Dickey-Fuller tests. Table 3 sets out the equivalent test
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statistics to those in Table 1 using the Phillips-Perron test procedures. These were calculated
using the procedures in Shazam (1993).

Insert Table 3 about here.

3.22  The conclusions already drawn for the SPI and for the interest rate series are
supported by these test statistics. There are however some differences apparent for the other
series. For the logCPI series the Phillips-Perron φ3 rejects the null hypothesis α0≠0, α2=0,
α1=0 and the hypothesis that α1=0 is not rejected. The conclusion is that the series has a unit
root with a trend. The differences in the series are stationary. Similar conclusions are reached
for logAWE using the Phillips-Perron statistics. In the case of LogSDiv, the logarithm of the
dividends series, the Phillips-Perron statistics suggest that this series is difference stationary
with drift. Dividend yields are difference stationary without drift.

3.23  So far the data period used has been common to all the series covering the
period September 1969 to December 1994. Some of the series are available for longer time
periods. Tables 4 and 5 report unit root test statistics for these longer time periods for the
relevant series.

Insert Table 4 about here.

Insert Table 5 about here.

3.24  For the period March 1939 to March 1995 Tables 4 and 5 provide support for
the hypothesis that logSPI is difference stationary with drift. This longer period of data
provides a more reliable estimate of the drift. The conclusion is that the logSPI is difference
stationary with positive drift. There is evidence in Table 4 that logAWE and logCPI are
integrated of a higher order than 1 but the results in Table 5 suggest that they are integrated of
order 1.

3.25  Because the data used are quarterly it is necessary to test for seasonal
integration. In quarterly data there could be a bi-annual or annual frequency seasonal unit root
as well as the quarterly unit root tested for already. Hylleberg et al (1990) develop tests and
test statistics for seasonal unit roots. Shazam (1993) provides procedures for implementing
these tests. These procedures were applied and bi-annual and annual unit roots are
convincingly rejected for all of these series.

3.26  It is worth noting that structural breaks in any series can result in a stationary
series appearing to have a unit root. This will lead to differencing the data when a model
using the levels of the data and explicitly capturing the structural break would be more
appropriate. Differencing series results in the loss of information about the long run level of
the series so that care has to be taken to ensure that the series is not stationary.

3.27  It could be argued that deregulation of financial markets during the 1980’s
resulted in a structural break in many of the series. For instance the method used to sell
government securities changed during this period and the bond market became more active.
The requirements for life insurance companies, superannuation funds and banks to hold
government securities were also relaxed. During this period an imputation tax system was
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introduced for share investments. All of these factors could well have resulted in structural
changes in rates of return and the levels of the series used in this study.

3.28  We have presented the results from applying the standard procedures used in the
econometrics literature to determine if a time series is stationary or not. The standard null
hypothesis used in these unit root tests is that the series are non-stationary. This is the basis of
the test procedures reported in this section of the paper. For purposes of actuarial modelling
some caution should be used before adopting the results of these unit root tests. It will be
important to ensure that economic reasoning can be used to justify the assumptions used in
the model. Bearing in mind some of the cautions raised in sections 3.26 and 3.27 as well as
the discussion of the unit test results, the development of an actuarial model will require
further analysis beyond the standard unit root tests reported here.

44..  CCOOIINNTTEEGGRRAATTIIOONN

4.1  The differencing operation used to achieve stationarity, often used in developing
stochastic investment models for actuarial applications, involves a loss of information about
long-run movements in the series. The theory of cointegration explains how to study the inter-
relationships between the long-term trends in the series. These long-term trends are
differenced away in the standard Box-Jenkins approach. The inter-relationships between the
long-term trends in the series can be interpreted as equilibrium relationships between the
series.

4.2  In financial markets informed investors act quickly on new information
particularly when transaction costs are low and markets are liquid. Financial markets can be
out of apparent equilibrium as evidenced by speculative bubbles that occur when the share
market booms and subsequently crashes even though these events are consistent with rational
expectations. Economic systems are less likely to be in equilibrium since friction and price
stickiness in goods and labour markets can cause the adjustment process to equilibrium to
occur over an extended time frame. This suggests that if equilibrium relationships exist
between financial and economic variables then these will only be detected by examining data
over long time periods.

4.3  Rates of return on different investments would be expected to have long run
equilibrium relationships determining their relative values. For example the spread between
the return on a short term investment and the return on a longer term investment should
fluctuate around some long term relationship that reflects the risk premium investors require
for the longer term investment over the shorter term investment. If a long term relationship
does hold then the difference between the returns should have a stationary distribution. The
rates of return themselves might not be stationary but a linear combination of them will be
stationary if such a long run equilibrium holds. Rates of return adjusted for expected rates of
inflation, referred to as “real” rates of return as compared with nominal rates of return, might
also be expected to have a stationary distribution.

4.4  Most actuaries assume that there is a relationship between equity returns and
inflation. This assumption is usually implicit in the use of “real” rates of return for projecting
asset values and for valuation purposes. If a constant “real” rate of return is used then this
implicitly assumes that asset returns are perfectly correlated with inflation. The Wilkie model
uses inflation as the main factor driving asset returns. Investment model studies by Carter
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(1991) and Harris (1995) include results derived from fitting Wilkie’s model to Australian
data and find no statistically significant empirical relationship between equity returns and
rates of inflation. This conflict between often used actuarial assumptions and empirical results
clearly requires investigation since it will be fundamental to investment modelling and
modelling the interaction between liabilities and assets of insurance companies and pension
(superannuation) funds.

4.5  It is important to recognise that equity values and inflation can have a long-run
equilibrium relationship and for no statistically significant relationship between equity returns
and rates of inflation to exist. This could be the case if the series are co-integrated. Rates of
inflation and equity (capital) returns are differences in the logarithm of the level of the
inflation index and differences in the logarithm of the equity index respectively. These rates
of change in the levels of the indices might appear to have no statistical relationship even
though the levels of the indices might be co-integrated with a long run equilibrium
relationship. Each of the index series would be difference stationary containing a unit root,
consistent both with the notion of market efficiency and with studies of Australian data such
as Carter (1991), Harris (1994) and the results in this paper.

4.6  If variables are non-stationary but an equilibrium relationship represented by a
linear combination of the variables exists such that this linear combination is stationary then
the variables are said to be co-integrated. Engle and Granger (1987) suggested the concept of
cointegration and developed tests for cointegration. The concept of cointegration captures the
notion that two or more series “move together” in some fashion. The series have common
stochastic trends.

4.7  Testing for cointegration between any two series, where there is only one co-
integrating linear combination determining the equilibrium relationship between the series,
requires only the unit root tests used earlier to determine the order of stationarity of the
investment data. Consider two series xt and yt that are integrated of order 1 so that they are
difference stationary. If a long-term (linear) relationship exists between these then xt-βyt, for
some constant β, will be stationary. If xt is regressed on yt and there is a long run equilibrium
relationship between them, then the residuals from this regression will not have a unit root.
Thus for these residuals the null hypothesis of a unit root should be rejected if the series are
co-integrated. Otherwise there is no evidence of cointegration.

4.8  Table 6 reports the results of unit root cointegration tests for bi-variate series from
Australian data using augmented Dickey Fuller tests and Table 7 reports the results using
Phillips-Perron tests. From the tests carried out earlier in this paper all of the series used were
integrated of order 1. The results in Tables 6 and 7 were calculated using procedures in
Shazam (1993). They consider each of the bi-variate series over the longest time period
available and also for shorter time periods.

Insert Table 6 about here.

Insert Table 7 about here.

4.9  For this data frequency there is no evidence that any of the bi-variate series
considered, other than the 90 day bank bill yield and the 10 year Treasury bond yield, are co-
integrated. In all cases other than for these two interest rates the test statistics for both ADF
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and Phillips-Perron tests given in Tables 6 and 7 do not reject the null hypothesis of a unit
root. Thus there is no evidence that the SPI and the CPI ‘move together’ nor that share index
dividends and the CPI ‘move together’. It is encouraging to find that the long and short
interest rate are co-integrated since this is supported by the results of Ang and Moore (1994).

55..  EERRRROORR  CCOORRRREECCTTIIOONN  MMOODDEELLSS

5.1  If a number of series are co-integrated then they have common stochastic trends
and move together through time following a long-run equilibrium. This long run equilibrium
is disturbed by random shocks that are short term or temporary effects. The series eventually
adjusts for these. This short term adjustment process is referred to as an error correction
mechanism. Engle and Granger (1987) proved that for any co-integrated series an error
correction model exists. The error correction model captures both the short term departures
from the long run equilibrium and the long run equilibrium in the model structure.

5.2  Investment models should incorporate error-correction mechanisms to ensure an
equilibrium exists in the model. In the data used in the analysis in this paper the long and
short run interest rates are co-integrated and should be modelled using an error correction
mechanism. Otherwise if differences in interest rates are modelled as stationary variables with
no error-correction mechanism then the levels of interest rates will have stochastic trends and
‘shocks’ to interest rates will be permanent. In such a model interest rates could ‘wander’ off
to arbitrarily high and low levels in a manner inconsistent with the historical data.

5.3  If the short interest rate at time t is denoted by BB90t and the long interest rate at
time by TB10t, both of which are non-stationary, then the previous analysis indicates that a
regression of TB10t on BB90t results in stationary errors (under standard unit root tests). This
means that TB10t – (γ1 + γ2 BB90t) is a stationary process representing the long run (linear)
relation between the two series. This equilibrium relationship should be incorporated in an
interest rate model using an error correction mechanism. Standard stationary time series
modelling techniques will not detect the long-run relationship captured in the stationary error
correction mechanism. It is worth stressing that ignoring any cointegrating relationships
ignores important information about long-run equilibrium relationships between the series.

5.4  For the interest rates the cointegrating vector (TB10)t - 4.196 - 0.5905(BB90)t

was found to be stationary. It represents the estimated long term linear relationship. The error
correction model was estimated to be

∆(TB10)t = 0.2325∆(BB90)t - 0.1123((TB10)t-1 - 4.1960 - 0.5905(BB90)t-1)) + ut

where ut is stationary. Thus the stochastic trend in (TB10)t is 23.25% of the (BB90)t

stochastic trend and 11.23% of the previous period’s disequilibrium. Table 8 provides the
regression details.

Insert Table 8 about here.

5.5  The conclusions that can be drawn from this analysis of co-integrating, or ‘long-
run’ equilibrium, relationships in the Australian returns data are that, with the exception of
the interest rate series, the analysis finds no strong evidence that such equilibrium
relationships exist between the series analysed. This has implications for the structure of
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stochastic investment models. It will be important to incorporate an equilibrium structure for
interest rates in the model but differences in the logarithms of the SPI, CPI and dividends can
be used in the model as stationary variables without the need to incorporate any specific
equilibrium between these series. This also adds to the empirical evidence for Australian data
that there are no strong relationships between inflation and equity returns.

66..  SSTTAATTEE  SSPPAACCEE  MMOODDEELLSS

6.1  Carter (1991), Wilkie (1986, 1995) and Thomson (1996) use transfer functions to
develop their models. This approach allows the estimation of a cascade structure for a
stochastic investment model with causality in one direction assumed. The main driving
variable in these models is the rate of inflation. It should be noted that the Wilkie model
could be written as a VARMA model where feedback is not allowed. In this case the model is
a particular case of the more general VARMA models.

6.2  Transfer functions were examined in this research. The results are not reported in
any detail here since it was found that after fitting these models there was evidence of
feedback between the different variables. This means that transfer functions will not
adequately capture the relationship between the different series since they impose a uni-
directional causality that is not supported by the empirical data.

6.3  An alternative model is the vector autoregressive or VAR model. These models
are used in practice for asset models and have the advantage that they allow for feedback.
VAR models were fitted and it was found that too many lags were required and the models
were difficult to interpret. Introducing a moving average term into these models is equivalent
to an infinite number of auto-regressive terms so that a vector autoregressive moving average
(VARMA) model should provide a more parsimonious model than a VAR model.

6.4  State space models provide an alternative method of representing a stochastic
investment model. They have an equivalent (VARMA) representation which has fewer lagged
variables than the VAR models. Transfer function models are nested in the VARMA models.
A state space model can be written as a state equation:

zt+1 = F zt + G et+1

and an observation equation:
yt  = H zt

where yt are actual observations at time t, zt is the state of the model at time t, F, G and H are
matrices of parameters and et is a vector of mean zero, serially uncorrelated disturbances with
covariance matrix Σ. The statistical package SAS was used to fit state space models using its
state space procedure which selects the best model using the Akaike information model
selection criteria. SAS selects the best number of lags of the variables to use in the state
vector of the statespace model using the Akaike information model selection criteria by
considering a range of lags. Full details of the how SAS selects the best model is found in the
SAS/ETS Users Guide (SAS Institute, 1993). The series used in the model are the relevant
state variables and these are assumed to be observed without error.

6.5  Returns and inflation
To examine the relationships between asset returns and inflation, state space models were
fitted using each of the individual asset returns series and inflation. Models were fitted to the
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growth rate of the equity index, the growth rate of dividends, the 10 year bond rate and the
rate of inflation. These models will also allow a comparison with transfer function models.

6.5.1  Equity index (SPI) and inflation (CPI)
The following state space model for equity index and inflation rates was fitted as the best
model using the Akaike information criteria for the quarterly data from September 1948 to
March 1995:
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where the variables are the differences in the logarithms of the series, or the continuously
compounding returns, adjusted for the mean of the series as follows:
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with Yt = log(CPI)t, Xt = log(SPI)t, and yt+1|t = yt+1-et+1 is the predicted value for time t+1
conditional on information at time t. Note that the vectors et+1 are assumed to be a sequence
of independent normally distributed random vectors with mean 0 and covariance matrix Σ.

From the covariance matrix the estimated standard deviations of the residuals after fitting the
model are 0.0092 for the quarterly continuously compounding rate of inflation and 0.094 for
the quarterly continuously compounding rate of growth of the SPI with a correlation between
the residuals of -0.0834.

The parameter estimates were:

Parameter Estimate Std. Error t value
F(3,3) 0.905 0.041 22.326
G(3,1) 0.432 0.066   6.563

For simulation studies such as in asset and liability modelling it is important to recognise that
this model does not capture parameter or model uncertainty and has been calibrated to
historical data over the time period September 1948 to March 1995. The variances in asset
returns and rates of inflation are assumed to be homoscedastic in this model. The model can
be written as an equivalent VARMA model as follows:
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Note that using this modelling approach the best model for log(SPI)t is a random walk with
drift and an ARMA model is required for log(CPI)t. This model is very different to that
suggested by Wilkie.

6.5.2  Equity dividends and inflation (CPI)
The following state space model for equity dividends and inflation was fitted as the best
model using the Akaike information criteria for the quarterly data from September 1967 to
December 1994:
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Xt = log(DIVS)t, Yt = log(CPI)t.

The parameter estimates were:

Parameter Estimate Std. Error t-value
F(5,1)  0.030 0.010  3.038
F(5,2)  0.340 0.121  2.800
F(5,3) -0.236 0.082 -2.864
F(5,4)  0.481 0.150  3.208
G(3,2)  0.258 0.091  2.837
G(4,1) -0.021 0.010 -2.057
G(4,2)  0.382 0.089  4.290
G(5,2)  0.440 0.089  4.971

This model shows how log(DIVS) and log(CPI) are interrelated. An equivalent VARMA
model can be readily developed from the above state space model.

6.5.3.  10-year treasury bond rates (TB10) and CPI
Using the quarterly series from March 1958 to December 1994 the state space model was:
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The parameter estimates were:

Parameter Estimate Std. Error t-value
F(4,3)  0.675 0.042 16.146
F(4,4) -0.308 0.057  -5.448
G(3,2)  0.126 0.056   2.245
G(4,1)  0.382 0.073   5.232
G(4,2)  0.182 0.052   3.516

The equivalent VARMA model fit is given by the following equation.
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These bi-variate models capture the relationship between these variables and assist in
understanding the nature of these series and their interrelationships. However it can be seen
that the models for the inflation series differ in each of the above models. This suggests that a
model incorporating all of the series could provide more information about the best model for
inflation since it will incorporate the interrelationships between the series. Such a model was
fitted and the resulting model was complex and difficult to interpret so it has not been set out
in this paper.

6.6  Other models
Models were also fitted to the SPI and the dividend series as well as the SPI and the 10 year
bond yield to examine the relationships between these series.
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6.6.1 Equity index (SPI) and equity dividends (DIVS)
The best state-space model using the quarterly series from September 1967 to December 1994
was found to be:
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The model indicates that these series are random walks with drifts and correlated errors. In
this case parameter estimates will be more efficient in a model that includes both series. Even
though the statistical evidence supports random walk models for both series the correlation of
the errors means that considering the two series simultaneously pools information. Note that
the model is for an equity dividend index and not for a dividend yield. The dividend yield is
given by the difference in the dividend index divided by the value of the share price index.
Models that assume that the dividend yield is stationary and mean-reverting will not
necessarily be consistent with this fitted model. Which approach is better is a matter for
future research.

6.6.2  Equity index (SPI) and 10-year treasury bond rates (TB10)
The best state-space model for the quarterly series from March 1958 to December 1994 was:
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The parameters were:

Parameter Estimate Std. Error T-Value
F(1,1) 0.982 0.016 63.029

Note that the fitted 10 year bond yield model is close to a random walk with drift and the
equity index is a random walk with drift.

6.7  Summary
6.7.1  These models have all been bi-variate models based on quarterly Australian

data. Ignoring heteroscedasticity, they provide support for the random walk model for the
equity index. They also provide support for modelling the difference in interest rates, and not
the level of the series, as a stationary series. These features are not found in many of the
stochastic models that have details available in the public domain.

6.7.2  For asset liability studies it will be important to have a model to project the
equity returns, dividends, inflation and interest rates as a multi-variate system. As noted
earlier such a model appears to be rather complex and difficult to interpret. In the state space
approach the parameters in F and G can be allowed to be time varying. The models can
incorporate parameter uncertainty for forecasting purposes. Using parameter estimates from
historical data for forecasting or model projection ignores any parameter uncertainty and is
likely to understate the future uncertainty.

6.7.3  The Kalman filter maximum likelihood approach can be used with state space
models to estimate model parameters. This leads to an estimation procedure that allows
recursive model estimation and updating.

6.7.4.  It should also be noted that tests of the assumptions of the model concerning
the residuals have not been performed for these models. The results are based on the
assumptions of i.i.d. and normally distributed errors.

CCOONNCCLLUUSSIIOONNSS

7.1  This paper has set out the results of research into the structural features of a
stochastic investment model for actuarial applications using Australian data. This analysis is
fundamental to the construction of a soundly based model. It has analysed Australian
investment data using a quarterly time period. It has formally tested stationarity of all the
series and examined which series are cointegrated and therefore maintain a long run
equilibrium relationship. It has also examined the appropriateness of transfer function models
that assume one way causality between series using Australian investment data.

7.2  The results of the research suggest that the stationary variables in the Australian
investment quarterly data are the rate of (continuously compounding) growth in the Share
Price Index (SPI), the rate of (continuously compounding) growth in the Consumer Price
Index (SPI), the rate of (continuously compounding) growth in a Dividend index representing
the dividends on the SPI, and differences in the interest rate series. The statistical analysis did
not provide evidence that the interest rate levels were stationary.
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7.3  The cointegration tests indicated a long-run equilibrium relationship exists
between the interest rates whereas there was no evidence to support such a relationship
between equity values, as measured by the SPI and a Dividend index, and the level of the
inflation index (CPI).

7.4  Transfer functions models were fitted to the various series and inflation but they
were not found to capture the relationships between these series. State space models for the
different series and inflation were fitted to allow a comparison with transfer function models
fitted by other researchers.

7.5  This research highlights some important lessons for those wishing to construct
and use stochastic investment models. It indicates the type of analysis that should be the
foundation of an analysis of the series to be used in these models and the nature of the
relationships that should be included. These matters are fundamental to the construction of
stochastic investment models.
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AAPPPPEENNDDIIXX  AA

AAUUSSTTRRAALLIIAANN  IINNVVEESSTTMMEENNTT  DDAATTAA  --  SSUUMMMMAARRYY  SSTTAATTIISSTTIICCSS

Different series were available for different time periods. In the analysis in the paper the
longest time periods available for the series have been used where possible. Statistics for
these series over different time periods are summarised in this Appendix.

((11))  CCoonnssuummeerr  PPrriiccee  IInnddeexx  --  aallll  ggrroouuppss  ((CCPPII))  aanndd  AAllll  OOrrddiinnaarriieess  SShhaarree  PPrriiccee  IInnddeexx  ((SSPPII))
Quarterly data were available for these series for the period September 1948 to March 1995.
Table A1 sets out summary statistics for these indices, the logarithm of the index and the
change in the logarithm.

Table A1.  Summary statistics of CPI and SPI, logarithm of CPI and SPI and first differences
of logarithms of CPI and SPI.

Statistics N Min Max Mean St Dev Skewness Excess Kurtosis
CPI 187   6.70   114.70   39.1064   34.0734   1.0008  -0.4688
log(CPI) 187   1.9021       4.7423     3.2964     0.8573   0.3615  -1.2894
∆log(CPI) 186  -0.0087       0.0704     0.0153     0.0132   1.1935   2.0125
SPI 187 84.60 2238.70 561.5283 567.3915   1.3879   0.6055
log(SPI) 187   4.4379       7.7137     5.8806     0.9354   0.3983  -0.9342
∆log(SPI) 186  -0.5728       0.2613     0.0161     0.0940 - 1.6993   8.7947

Note the negative skewness and high kurtosis for the continuously compounding return on the SPI - given by the
variable ∆log(SPI).

((22))    CCoonnssuummeerr  PPrriiccee  IInnddeexx  --  aallll  ggrroouuppss  ((CCPPII))  aanndd  SShhaarree  DDiivviiddeennddss  ((DDIIVVSS))
Quarterly data for the period September 1967 to December 1994 was available for the CPI.
The Dividend yield series is the Melbourne weighted (M.W.) series from September 1967 to
December 1982. This was merged with the Australian dividend yield (A.Y.) series, which is
available from September 1983 to March 1995, by taking 2/3M.W.+1/3A.Y. for March 1983
and 1/3M.W.+2/3A.Y. for June 1983. The share dividend series (DIVS) is derived as the
product of the SPI and the dividend yield for each quarter. It represents an annualised amount
of dividends paid over the prior 12 months. Table A2 sets out summary statistics for these
series, the logarithms of the series and the differences in the logarithms of the series.
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Table A2.  Summary statistics of CPI and DIVS, logarithm of CPI and DIVS and first
differences of logarithms of CPI and DIVS.

Statistics N Min Max Mean St Dev Skewness Excess
Kurtosis

CPI 110    16.20   112.80     56.9036    33.2526     0.3283  -1.3353
log(CPI) 110      2.7850       4.7256       3.8406      0.6678    -0.2351  -1.3759
∆log(CPI) 109     -0.0046       0.0566       0.0178      0.0116     0.7168   1.0666
DIVS 110  747.40 9398.25 3526.76 2603.95     0.8094  -0.6369
log(DIVS) 110      6.6166      9.1483       7.8808       0.7802     0.0526  -1.3005
∆log(DIVS) 109    -0.1987      0.2132       0.0208       0.0653   -0.3005   1.2734

((33))    IInntteerreesstt  RRaatteess
Quarterly interest rate data (% p.a.) are available for 90-day Bank Bills (BB90) from
September 1969 to December 1994, for 5-year Treasury Bonds (TB5) from June 1969 to
December 1994 and for 10-year Treasury Bonds (TB10) from March 1958 to December 1994.
The summary statistics of BB90, log(BB90), ∆log(BB90)t, TB5, ∆(TB5)t, TB10, and
∆(TB10)t are given in Table A3.

Table A3  Summary statistics of Interest rates (% p.a.) and first differences of Interest rates.

Statistics N Min Max Mean St Dev Skewness Excess
Kurtosis

BB90 102   4.45  19.95 10.9093 4.1029  0.3310 -0.8313
log(BB90) 102   1.4929    2.9932   2.3148 0.3981 -0.2784 -0.8812
∆log(BB90) 101  -0.4002    0.6213   0.0034 0.1712  0.6058  1.4652
TB5 103   0.0128    0.0394   0.0253 0.0072 -0.0909 -1.0977
∆(TB5) 102  -0.0060    0.0050   0.0001 0.0019 -0.1966  1.2405
TB10 148   0.0106    0.0394   0.0216 0.0085  0.2654 -1.3368
∆(TB10) 147  -0.0056    0.0048   0.00008 0.0014 -0.1179  3.7768

((44))  AAllll  sseerriieess
Quarterly data for all series was available from September 1969 to December 1994. Table A4
provides summary statistics for this time period.
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Table A4  Summary statistics of all series
Quarterly Data from September 1969 to December 1994

Variable Mean St.Dev. Max Min Median Mode Skewness Excess
Kurtosis

CPI     60.074     32.462   112.80   17.000     55.300   107.60  0.2375 -1.3631
Log(CPI)       3.9220       0.62386       4.7256     2.8332       4.0128       4.6784 -0.3408 -1.2288
AWE   776.57   398.30 1364.3 176.90   796.33 1000.8 -0.0145 -1.3769
Log(AWE)       6.4806       0.64460       7.2184     5.1756       6.6800       6.9086 -0.6544 -0.8507
SPI   865.01   595.05 2238.7 194.30   603.40 2238.7  0.6797 -1.0008
Log(SPI)       6.5177       0.71137       7.7137     5.2694       6.4026       7.7137  0.1667 -1.4523
SD yields       4.4506       1.1496       7.7300     2.0700       4.5000       5.8500  0.2237 -0.1128
SDiv 3741.5 2584.0 9398.3 861.74 2877.4 9398.3  0.7365 -0.7603
BB90     10.909       4.1029     19.950     4.4500     10.350     15.450  0.3310 -0.8313
TB2     10.185       3.2623     16.400     4.6000       9.9400     15.150  0.0137 -1.1443
TB5     10.465       2.9845     16.400     5.2000     10.030     13.850 -0.0775 -1.0843
TB10     10.648       2.8299     16.400     5.7500     10.180      9.5000 -0.0997 -1.0091

Table A5  Jarque-Bera Asymptotic LM Normality Test
September 1969 - December 1994

Chi-squared 2DF 5% Critical Value 5.99

Variable Chi-Square
Statistic

CPI  8.74*
LogCPI  8.32*
AWE  7.96*
LogAWE 10.27*
SPI 11.97*
LogSPI  9.28*
SD yields  9.47*
SDiv 11.55*
BB90 4.87
TB2 5.60
TB5 5.15
TB10 4.57

*significant at 5% level



Table 1.  Test Statistics for Unit Roots – Augmented Dickey-Fuller Regressions

Variable n τ1 φ1 τ2 φ2 φ3

10% Critical Value (-2.57)  (3.78) (-3.13) (4.03)  (5.34)
LogCPI   96  -2.5394   5.0773*  -0.14401  3.3658   3.2153
∆LogCPI   95  -1.9654   1.9387  -3.2620*  3.8593   5.7811*
LogSPI 101  -0.36670   1.0593  -2.5374  2.9977   3.4468
∆LogSPI   93  -4.0574*   8.2403*  -4.0353*  5.5106*   8.2573*
LogAWE   94  -2.9235*   5.0615*  -1.1134  3.3407   4.2320
∆LogAWE   94  -1.6971   1.5320  -3.1763*  3.4963*   5.1460
LogSDiv   91  -0.94375   3.2947  -2.2644  3.8328   2.7697
∆LogSDiv   97  -3.6085*   6.5145*  -3.5827*  4.3077*   6.4580*
SDyields   94  -2.6065*   3.4282  -2.4752  2.4863   3.6984
∆SDyields   93  -4.2322*   8.9565*  -4.3210*  6.2671*   9.3998*
BB90   95  -2.0651   2.1326  -1.8133  1.4128   2.1190
∆BB90   93  -4.3252*   9.3662*  -4.5146*  6.8251* 10.225*
TB2   98  -2.1987   2.4757  -2.2523  1.7769   2.6071
∆TB2   97  -3.5883*   6.4738*  -3.5303*  4.3129*   6.4337*
TB5   98  -1.9812   2.0334  -1.8892  1.3792   1.9985
∆TB5   96  -3.5858*   6.4526*  -3.6100*  4.4730*   6.6862*
TB10 101  -1.8629   1.9083  -1.3939  1.3380   1.8353
∆TB10   98  -4.8847* 11.930*  -4.9430*  8.2041* 12.306*

* indicates significant at 10% level, based on the limiting distributions

n is the number of observations, τ1 is the least squares t statistic for regression (3), τ2 is the least squares t statistic for regression (4)
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Table 2.  Tests for Unit Roots - Parameters of Augmented Dickey-Fuller Regressions
(t statistics in brackets beneath the estimate)

Regression 3 Regression 4
Variable p α0 α1 p α0 α1 α2

LogCPI   5    0.02438
  (2.94)

  -0.00446
 (-2.539)

  5   0.017387
 (0.5417)

  -0.00175
 (-0.1440)

  -0.00006
 (-0.2255)

∆LogCPI   5    0.00390
  (1.744)

  -0.20633
 (-1.965)

  5   0.01406
 (3.262)

  -0.41302
 (-3.262)

  -0.00011
 (-2.724)

LogSPI   0    0.05472
  (0.5161)

  -0.00594
 (-0.3667)

  0   0.54693
 (2.536)

  -0.10166
 (-2.537)

   0.00251
  (2.598)

∆LogSPI   7    0.02421
  (1.803)

  -1.2959
 (-4.057)

  7   0.01283
 (0.4519)

  -1.3302
 (-4.035)

   0.00021
  (0.4551)

LogAWE   7    0.11815
  (3.041)

  -0.01577
 (-2.923)

  7   0.12763
 (1.513)

  -0.01766
 (-1.113)

   0.00005
  (0.1267)

∆LogAWE   6    0.00520
  (1.204)

  -0.29492
 (-1.697)

  6   0.03463
 (2.952)

  -0.80799
 (-3.176)

  -0.00034
 (-2.684)

LogSDiv 10    0.09404
  (1.188)

  -0.00092
 (-0.9437)

10   0.99212
 (2.332)

  -0.14792
 (-2.264)

   0.00361
  (2.147)

∆LogSDiv   3    0.01354
  (1.789)

  -0.67085
 (-3.609)

  3   0.01587
 (1.043)

  -0.67512
 (-3.583)

  -0.00004
 (-0.1772)

SDyields   7    0.84903
  (2.610)

  -0.18277
 (-2.607)

  7   0.91397
 (2.719)

  -0.17543
 (-2.475)

  -0.00176
 (-0.7951)

∆SDyields   7    0.01025
 (0.1704)

  -1.3678
 (-4.232)

  7   0.13634
 (0.9379)

  -1.4646
 (-4.321)

  -0.00224
 (-0.9529)

BB90   6   1.3958
 (1.987)

  -0.12360
(-2.065)

  6   1.4177
 (1.963)

  -0.11965
 (-1.813)

  -0.00121
 (-0.1463)

∆BB90   7   0.00596
(0.02885)

 -1.5594
(-4.325)

  7   0.58113
 (1.167)

  -1.7217
 (-4.515)

  -0.01032
 (-1.268)

TB2   3   0.74802
(2.203)

 -0.06935
(-2.199)

  3   0.71168
 (2.061)

  -0.07914
 (-2.252)

   0.00255
  (0.6407)

∆TB2   3   0.03630
(0.3556)

 -0.71139
(-3.588)

  3   0.10645
 (0.4620)

  -0.73037
 (-3.530)

  -0.00130
 (-0.3400)

TB5   3   0.61876
(2.011)

 -0.05561
(-1.981)

  3   0.61260
 (1.977)

  -0.06071
 (-1.889)

   0.00111
  (0.3311)

∆TB5   4   0.03165
(0.3752)

 -0.79979
(-3.586)

  4   0.16815
 (0.8454)

  -0.86536
 (-3.610)

  -0.00249
 (-0.7582)

TB10   0   0.54248
(1.951)

 -0.04698
(-1.863)

  0   0.54105
 (1.939)

  -0.04031
 (-1.394)

  -0.00134
 (-0.4767)

∆TB10   2   0.02894
(0.3953)

 -0.84539
(-4.885)

  2   0.15870
 (0.9776)

  -0.88785
 (-4.943)

  -0.00240
  (0.8958)

Values for p were determined using the procedures in the econometric package Shazam (1993)
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Table 3.  Test Statistics for Unit Roots -Phillips-Perron Tests (n=101)

Variable τ1 φ1 τ2 φ2 φ3

10% Critical Value    (-2.57)    (3.78)  (-3.13)    (4.03)    (5.34)
LogCPI     -3.8378* 119.83*    2.2660   98.752*   13.073*
∆LogCPI     -5.2039*   13.482*   -6.3676*   13.538*   20.307*
LogSPI     -0.3098     0.9029   -2.8153     3.4695     4.3031
∆LogSPI     -9.8017*   48.052*   -9.8160*   32.128*   48.178*
LogAWE     -4.1848*   48.665*    0.0434   33.830*     9.6581*
∆LogAWE     -8.4424*   35.636*   -9.9542*   33.037*   49.544*
LogSDiv     -1.1221     6.5966*   -1.5004     4.8385*     1.4252
∆LogSDiv   -10.607*   56.279* -10.613*   37.587*   56.374*
SDyields     -3.1195*     4.9308*   -3.0255     3.3472     4.9644
∆SDyields     -9.1122*   41.529*   -9.4328*   27.813*   41.712*
BB90     -2.7201     3.7059   -2.6124     2.4444     3.6589
∆BB90   -10.773*   58.023* -10.775*   38.702*   58.047*
TB2     -1.9289     1.9504   -1.7487     1.2882     1.8453
∆TB2     -9.1718*   42.071*   -9.1772*   28.106*   42.152*
TB5     -1.8815     1.8962   -1.5613     1.2723     1.7848
∆TB5     -9.2738*   43.005*   -9.3308*   29.027*   43.541*
TB10     -4.8920*     1.9395   -1.4685     1.3388     1.8608
∆TB10     -9.0689*   41.130*   -9.1662*   28.013*   42.018*

* indicates significant at 10% level, based on the limiting distributions
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Table 4.  Test Statistics for Unit Roots - ADF Regressions
Various Periods

Variable N τ1 φ1 τ2 φ2 φ3

10% Critical Value   (-2.57)    (3.78)    (-3.13)     (4.03)    (5.34)
Data from March 1939 to March 1995
LogSPI 223    -0.0369     3.2802     -2.7539     4.9204*     3.9974
∆LogSPI 210    -4.4210*     9.7739*     -4.4454*     6.5980*     9.8960*
LogAWE 210    -0.6899     2.1214     -2.4390     3.3084     3.0349
∆LogAWE 210    -2.3994     2.9010     -2.3545     1.9627     2.9216
Data from March 1958 to December 1994
LogCPI 179    0.18249     3.3767     -1.6925     3.3323     1.5961
∆LogCPI 180   -3.2500*     5.2817*     -3.2444*     3.5113     5.2666
LogSPI 185   -0.29941     2.8000     -2.4794     3.9967     3.1611
∆LogSPI 172   -4.0135*     8.0617*     -4.0168*     5.4166*     8.1171*
LogAWE 172   -0.07160     1.4983     -2.6340     3.4014     3.5482
∆LogAWE 173   -2.6096*     3.7562     -2.6057     2.5520     3.4787
Data from March 1958 to December 1994
LogCPI 147   -0.51786     1.3032     -2.6342     3.1287     3.4721
∆LogCPI 141   -2.1290     2.2675     -1.9831     1.5080     2.2608
LogSPI 146   -0.60057     2.3429     -2.1793     3.0718     2.3939
∆LogSPI 138   -4.3209*     9.3540*     -4.3673*     6.3799*     9.5508*
LogAWE 134   -1.0694     2.1296     -1.4421     1.9822     1.4069
∆LogAWE 134   -1.6881     1.4316     -1.6724     1.2924     1.9319
TB10 143   -1.4655     1.2807     -1.6998     1.2059     1.6020
∆TB10 142   -4.4264*     9.8343*     -4.4309*     6.6185*     9.8903*

* indicates significant at 10% level, based on the limiting distributions
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Table 5.  Test Statistics for Unit Roots - Phillips-Perron Tests
Various Periods

Variable τ1 φ1 τ2 φ2 φ3

10% Critical Value   (-2.57)     (3.78)    (-3.13)     (4.03)     (5.34)
Data from March 1939 to March 1995 (n=224)
LogSPI    -0.066319      3.1281     -2.8455      4.9236*      4.2426
∆LogSPI   -14.151*  100.13*   -14.143*    66.678*  100.02*
LogAWE     0.020279    57.654*     -1.0626    38.751*      0.58240
∆LogAWE   -11.358*    64.474*   -11.332*    42.781*    64.171*
Data from March 1948 to December 1994 (n=186)
LogCPI     0.23384    73.724*     -0.64481    49.144*      0.28228
∆LogCPI    -5.5568*    15.382*     -5.5431*    10.185*    15.278*
LogSPI    -0.32714      2.6717     -2.5693      4.0070*      3.3852
∆LogSPI  -12.851*    82.575*   -12.827*    54.846*    82.268*
LogAWE    -0.96316    48.872*     -0.52415    32.424*      0.52388
∆LogAWE  -10.584*    55.994*   -10.604*    37.463*    56.192*
Data from March 1958 to December 1994 (n=147)
LogCPI     1.5225    75.700*     -2.5431    57.601*      5.4467*
∆LogCPI   -5.1516*    13.206*     -5.2291*      9.1058*    13.655*
LogSPI   -0.61547     2.2874     -2.2381      3.0804      2.5254
∆LogSPI -11.650*   67.861*   -11.611*    44.949*    67.421*
LogAWE  -0.42646   39.283*     -0.52395    26.044*      0.19468
∆LogAWE -10.069*   50.672*   -10.041*    33.597*    50.395*
TB10   -1.3495     1.1305     -1.3746      0.90826      1.1456
∆TB10 -10.920*  -59.631   -10.913*    39.706*    59.559*

* indicates significant at 10% level, based on the limiting distributions



31

Table 6.  Test Statistics for Cointegration - ADF Regression Tests
Various Periods

Variable n τ1 φ1 τ2 φ2 φ3

10% Critical Value   (-2.57)     (3.78) (-3.13) (4.03)     (5.34)
Data from September 1948 to March 1995
RSC (SPI-CPI)   186    -2.2308      2.4892 -2.2755 1.7733      2.6588
∆RSC   186    -3.9832*      7.9760* -3.9460* 5.2886*      7.8902*
Data from March 1958 to December 1994
RSC (SPI-CPI)   147    -2.2356      2.5917 -2.2261 1.7159      2.4817
∆RSC   138    -4.1852*      8.7753* -4.1839* 5.8690*      8.7864*
R10C(TB10-CPI)   144    -1.8067      1.6823 -1.7801 1.2556      1.8333
∆R10C   147    -4.5473*    10.377* -4.5761* 7.0730*    10.571*
Data from September 1967 to December 1994
RSC (SPI-CPI)   109    -1.7755      1.5808 -1.8020 1.1877      1.7770
∆RSC   100    -3.5151*      6.1879* -3.7956* 4.8270*      7.2305*
RSD (SPI-DIVS)   102    -1.9911      1.9934 -2.0944 2.0728      3.0978
∆RSD   100    -3.8000*      7.2352* -4.1384* 5.7208*      8.5658*
RDC (DIVS-CPI)     99    -2.0153      2.0389 -2.0644 1.4597      2.1813
∆RDC     99    -4.5093*    10.167* -4.4580* 6.7409*    10.111*
Data from September 1969 to December 1994
RSC (SPI-CPI)   101    -2.1646      2.3788 -2.2573 2.1308      3.1598
∆RSC     93    -3.9151*      7.6758* -4.0427* 5.4993*      8.2371*
RSD (SPI-DIVS)     94    -2.2297      2.4956 -2.4545 2.5298      3.7847
∆RSD     93    -4.2881*      9.1979* -4.3814* 6.4889*      9.7294*
RDC (DIVS-CPI)     91    -1.9483      1.9080 -2.0843 1.5118      2.2576
∆RDC     97    -3.7729*      7.1208* -3.7797* 4.8360*      7.2507*
RB90T10 (BB90-TB10)     95    -3.0086*      4.6227* -3.3381* 3.7971      5.5976*
∆RB90T10     93    -4.5139*   10.189* -4.4986* 6.7474*    10.120*
RB90C (BB90-CPI)     95    -1.9732     1.9849 -1.9528 1.5621      2.3052
∆RB90C     93    -4.3734*     9.5769* -4.5307* 6.8770*    10.302*
RT10C (TB10-CPI)   101    -1.4796     1.0999 -1.6161 1.3038      1.9502
∆RT10C     98    -4.9972*   12.486* -5.0212* 8.4723*    12.708*

* indicates significant at 10% level
RSC are the residuals from the regression logSPI = α0 + α1 logCPI
RSD are the residuals from the regression logSPI = α0 + α1 logSDiv
RDC are the residuals from the regression logSDiv = α0 + α1 logCPI
RB90T10 are the residuals from the regression BB90 = α0 + α1 TB10
RB90C are the residuals from the regression BB90 = α0 + α1 logCPI
RT10C are the residuals from the regression TB10 = α0 + α1 logCPI
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Table 7.  Test Statistics for Cointegration - Phillips-Perron Tests
Various Periods

Variable N τ1 φ1 τ2 φ2 φ3

10% Critical Value   (-2.57)     (3.78)   (-3.13)    (4.03)   (5.34)
Data from September 1948 to March 1995
RSC 187    -2.3507      2.7666    -2.3937     1.9552    2.9318
∆RSC 186  -12.372*    76.536*  -12.345*   51.800*  76.200*
Data from March 1958 to December 1994
RSC 148    -2.3100      2.7567   -2.3011     1.8269    2.6546
∆RSC 147  -11.440*    65.442* -11.400*   43.330*  64.991*
R10C 148    -1.5317      1.2507   -1.5376     1.0544   1.5053
∆R10C 147  -11.194*    62.657* -11.207*   41.872*  62.807*
Data from September 1967 to December 1994
RSC 110    -1.8159      1.6544   -1.8381     1.2285    1.8384
∆RSC 109  -10.128*    51.297* -10.122*   34.158*  51.277*
RSD 110    -2.2646      2.5663   -2.2649     1.7906    2.6852
∆RSD 109  -10.423*    54.332* -10.413*   36.145*  54.207*
RDC 110    -1.9553      1.9130   -1.9500     1.2701    1.9015
∆RDC 109  -11.337*    64.269* -11.283*   42.449*  63.674*
Data from September 1969 to December 1994
RSC 102    -2.1995      2.4551   -2.2783     2.1503    3.1902
∆RSC 101    -9.6874*    46.938*   -9.7916*   31.968*  47.938*
RSD 102    -2.7287      3.7547   -2.7584     2.8158    4.1945
∆RSD 101    -9.8873*    48.908*   -9.9629*   33.111*  49.644*
RDC 102    -1.8420      1.6966   -1.8487     1.1802   1.7688
∆RDC 101  -10.755*    57.858* -10.703*   38.215*  57.318*
R9010 102    -4.2355*      8.9906*   -4.5131*     6.8119*  10.201*
∆R9010 101  -11.167*    62.349* -11.111*   41.160*  61.726*
R90C 102    -2.6822      3.6009   -2.7375     2.6313   3.9422
∆R90C 101  -10.789*    58.196* -10.782*   38.750*  58.119*
R10C 102    -1.5535      1.2136   -1.6759     1.3390    2.0035
∆R10C 101    -9.2265*    42.570*   -9.2868*   28.755*  43.130*

* indicates significant at 10% level
RSC are the residuals from the regression logSPI = α0 + α1 logCPI
RSD are the residuals from the regression logSPI = α0 + α1 logSDiv
RDC are the residuals from the regression logSDiv = α0 + α1 logCPI
R9010 are the residuals from the regression BB90 = α0 + α1 TB10
R90C are the residuals from the regression BB90 = α0 + α1 logCPI
R10C are the residuals from the regression TB10 = α0 + α1 logCPI
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Table 8.  Error-Correction Model for 10 year Treasury Bond and 90 day Bank Bill
yields

∆(TB10)t = β1∆(BB90)t – (1-α)((TB10)t-1 – γ1– γ2(BB90)t-1)) + ut

Coefficient Parameter estimate Standard Error Prob >|T|
β1 0.2325 0.0272 0.0001

-(1-α) -0.1123 0.0382 0.0041
γ1 4.1960 0.4216 0.0001
γ2 0.5905 0.0361 0.0001


