
Claims reserving –

should ratios be used?



In any year, an insurer pays money in respect of events 
that occurred that year, in the previous year, the year 
before that, and so on.
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Usually subdivided by class of business (e.g. CTP, WC, Public liability)
and often by territory, currency, or other variables.



These values are usually presented as triangles:

Data – triangles 

Often cumulated (added) along rows (“paid to date”).
Sometimes case estimates added in (→ “incurred”)

Claim counts (claims reported, finalised, etc).
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What do we mean by a ratio model?

For response variable, y, given a predictor, x: 

Ratio models

xi yi

× bon average, value being predicted 
is a multiple of the predictor 

E(y |x) = bx

Basic ratio assumption



E(yi |xi) = bxi

Ratio models

}y
Generally based on cumulative

array – paid or incurred or counts

at a given delay (j, supressed)
In context of 
loss triangle:

xi yi
×b

M M

M M

xi+1 yi+1
×b

j-1 j
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Development factor methods
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Development factor methods

1:0 2:1 3:2 4:3
2000 3.41 1.43 1.28 1.17
2001 3.76 1.54 1.31
2002 3.74 1.50
2003 4.20

Aim is to find some 
“typical” ratio for 
each column.

Then project out on 
same basis

The “basic ratio assumption” underlies almost all 
development factor methods. 

Ratios

Common choices include                
- ordinary average                     
- weighted by x (chain ladder)  
- average of last k years           
- geometric mean

Often, ratio is “judgementally
selected” rather than computed 
as an explicit average. 



Ratio models

Assessing suitability of the basic ratio assumption –

Two components of the assumption:

– yi increases linearly with xi
– that line passes through origin

E(yi |xi) = bxi

Why not plot yi vs xi and see?



Plot of y vs x
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That is, ratio assumption is effectively:

E(y–x |x) = (b–1) x

or E(p |x) = rx     (where p=y–x is incremental, r= b–1) 

Ratio models

But wait: Since it’s based on cumulative payments, 
y includes payments already made: y = x+p

Really only predicting part of y not already in x (i.e. 
p = y – x) since the x part is not prediction.

This is the predictive part of the ratio model



Ratio models

Is assumption   E(p |x) = rx tenable?

Again, look at a plot of the data.

If we plot  p vs x, what should we see? 

(scatter about) a straight line through the origin

p

x

slope r



Examples:  Four arrays, plot of p vs x for first pair of years
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Intercept is not at origin for these arrays.

E(p|x) ≠ rx   !

E(p|x) = a + rx   ?  

– while not a ratio, does previous cumulative (x) 
have some ability to predict current payment (p)? 

(Arrays selected by taking the first 4 triangles to hand that didn’t have
strong payment inflation*)



Calculate correlations and p-values:

Incr.(1) vs Cum.(0)
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Is assumption E(p |x) = rx tenable?

Note: If corr(x, p) = 0,  then corr(rx, p) = 0 

If x, p uncorrelated, no ratio has predictive power

Ratio selection by actuarial judgement
can’t overcome zero correlation.

p

x



If corr(x,p)=0, x like random numbers at predicting p

Experiment: Generate random numbers with the same 
mean and variance as x. Use them to predict p. 

How often do real x’s beat random numbers? 
(e.g. smaller MSPE)

Better be substantially more often than 50%!

Need to always check if previous
cumulative related to next incremental



Effect on relationship of inflation or increasing exposures
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In both cases increasing trend down each development (incr & cum)



Effect on relationship of inflation

Inflation

x p

Induced tendency to increase together down columns. 

Looks like a ratio effect in plot of p vs x,  
but cause is a common trend across accident years.



Effect on relationship of inflation

Inflation

x p

x and p now correlated, due to a “hidden” variable. 
(ignored rather than hidden)

Better predictions by using inflation directly, rather than
noisy proxy (x) to predict p. 

After adjusting for inflation and exposures, is there any 
remaining relationship between adjusted x & p’s? 



Plots of p vs x with inflation and increasing exposure. 

Incr.(1) vs Cum.(0)

Corr. = 0.441, P-value = 0.024
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Statistical models correspond to actuarial techniques 

Many formal actuarial methods correspond to statistical models 
(forecasts identical to the basic actuarial technique). 

For example the model:

yi = bxi+ei ei ~ N(0,σ2 xi
δ ) 

Note E(y |x) = bx — clearly a ratio model.

δ = 1: chain ladder (volume-weighted average dev.factor)
δ = 2: average development factor
δ = 0: (dev.factor wtd by vol2) / regression through origin 



Statistical models correspond to actuarial techniques 

In addition to calculation of standard errors, even forecast 
distributions, many useful model diagnostics readily available 

e.g. – std. residuals vs payment years  (claims inflation)

– std. residuals vs development years (variance)

– std. residuals vs fitted (useful for checking 0-intercept)

– influence diagnostics

– correlations in residuals across time

… many more



Variance assumption

We used p vs x plot to check ratio assumption.  (poss. detrended)

What about variance assumption?

e.g. Chain ladder assumes Var(yi) = Var(pi) = σ2 xi
δ with δ =1

How to check?

(Only worth worrying about if assumption for mean is okay!)



Variance assumption

How to check Var(yi) = Var(pi) = σ2 xi
δ with δ =1  ?

Could:

- plot std. residuals vs xi (or vs fitted)

(spread should be constant)

- plot residuals2 vs xi (should "spread out" linearly with xi )

- plot log(residuals2) vs log xi (should be ~linear, slope ~ δ)

•
••
••

•
•
•

•

•

•
••

• •
•

Generally see  Var(pi) ∝ E(pi)2 .   (Constant of proportionality 
often similar across development periods.)

Var(yi) = σ2 xi often reasonable for claim numbers.



Statistical models correspond to actuarial techniques 

Many non-ratio techniques (e.g. PPCI, PPCF) also have 
reproducing statistical models. 

e.g. If yij is PPCI, a model like

yij = µj + eij eij ~ N(0, σj
2)

reproduces standard PPCI forecasts (but other possible models)



Superimposed inflation

Ratio models actually interfere with measurement and 
prediction of changing superimposed inflation. 

Superimposed (or social) inflation is very common.
Changing social inflation appears even in claim numbers:

Wtd Std Res vs Cal. Qtr
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The Chain ladder

E(y|x) = bx

To produce the chain ladder predictions, need a weighted
regression through the origin:

yi = bxi ei ~ N(0,σ2xi) 

[Average development factor – just different weights: 
ei ~ N(0,σ2xi

2) ]



The Chain ladder

Regression model for chain ladder:

yi = bxi ei ~ N(0,σ2xi) 

Get standard regression diagnostics 

– especially residual plots (e.g. vs payment year, vs fitted)

– also inference on parameters, influence diagnostics, etc



The Chain ladder

Mack data (incurred losses = cumulative paid + case estimates)

Cum.(1) vs Cum.(0)
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Little inflation, so our simple diagnostic plots (y/x, p/x) work…



The Chain ladder

But also have diagnostic plots from the regression without 
intercept:

Wtd Std Res vs Cal. Yr
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The Chain ladder

Further information from the regression with intercept:

Devel. intercept ratio
Period est. s.e. p-val est. ratio-1 s.e. p-val
0-1 4329 516.3 0.00 1.2145 0.2145 0.4213 0.63
1-2 4160 2531.4 0.15 1.0696 0.0696 0.3584 0.85
2-3 4236 2814.5 0.19 0.9197 -0.0803 0.2474 0.76
3-4 2189 1133.1 0.13 1.0334 0.0334 0.0744 0.68
4-5 3562 2031.4 0.18 0.9268 -0.0733 0.1102 0.55
5-6 589 2510.4 0.84 1.0125 0.0125 0.1283 0.93
6-7 792 148.9 0.12 0.9911 -0.0089 0.0080 0.47

Plainly don’t need both intercept and ratio!

Intercept alone turns out to fit substantially better. 



Regression model with intercept:

E(yi) = a + bxi

Check plot of p vs x, and also inference on parameters.

If cov(X,Y) =0, best linear predictor* of Y is E(Y):

E( yi) = a,    

… predictions for rest of column:   a   (= y for example)

*(if X is the only available predictor)

^      
_      



The Chain ladder

Intercept alone (wtd ave) turns out to fit substantially better.

Has smaller forecast variances

Forecasts more stable 
(similar answer leaving out last year, year before,…)

Normality is not unreasonable here (slightly right skew),   

[often have substantial skewness 
– need to forecast distribution, not just mean 
so model for errors more critical than usual in regression ]



The Chain ladder

Several other models can reproduce chain ladder forecasts. 
- not all have E(y |x)= bx within data 

However: Out-of-sample prediction always has E(y |x)= bx

(or it couldn’t reproduce the equivalent ratio model)



The Chain Ladder

.

Out-of-sample predictive ability more important

ð Important to check ‘out-of-sample’ prediction errors 

(NB: forecasting claims reserves 
is always out-of-sample)



The Chain Ladder

In particular, can check ratio assumption (e.g. 
residuals vs fitted) and changing calendar 
year trends (in residuals).

Out-of-sample prediction always has E(y |x)= bx

ð Important to check ‘out-of-sample’ prediction errors 
especially for models without E(y|x) = bx internally



The Chain Ladder

Transpose Invariance property

Use Chain Ladder to project incrementals:   Take 
incremental array, cumulate across, find ratios, project, and 
difference back to incrementals.

Now: tranpose*, do chain ladder, 
transpose back → same forecasts!

(equivalently, perform chain ladder ‘down’ 
not ‘across’: cumulate down, take ratios 
down, project down, difference back)  

*(swap                )



The Chain ladder - Transpose Invariance property

Some implications:

1) chain ladder does not distinguish between accident and 
development directions.

2) There are parameters in both accident and development 
directions: s×s triangle has 2s–1 parameters for the mean

(row params are hidden by conditioning on first column)



The Chain ladder - Transpose Invariance property

Chain ladder does not distinguish between accident and 
development directions. They are not alike:
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The Chain ladder

Additionally, chain ladder (and ratio methods in general) 
ignore abundant information in nearby data.
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The Chain ladder

Additionally, chain ladder (and ratio methods in general) 
ignore information in nearby data.

 Log paid
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The Chain ladder 

Chain ladder is a two-way cross-classification model      
(Kremer 1982, Taylor 2000)
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of category labels don’t matter –
regards these two arrays as
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The Chain ladder – Transpose Invariance

s×s triangle: chain ladder has 2s–1 parameters for mean

How many parameters needed to describe previous array? 

Can describe shape of curve with 2 or 3   
Can describe stable accident year level with 1.

(most arrays similar – linear tail, smooth curve at start)

Chain ladder uses 20 for that array.

(and wastes those on ratios that                                     
don’t have predictive power)

Incr.(1) vs Cum.(0)

Corr. = -0.205, P-value = 0.570
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The Chain ladder

What effects does overparameterisation have?

- fitting noise rather than signal

- high parameter uncertainty

- unstable forecasts (small change in data – large change 
in prediction)

(projects and amplifies noise into the future)

 

 

For a basic illustration of why link ratios methods fail. Click here. 

 

 

Administrator
Underline

http://www.insureware.com/about/ratio.shtml



