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The bootstrap is, at heart, a way to obtain an approximate sampling distribution for a 
statistic (and hence, if required, produce a confidence interval). Where that statistic is 
a suitable estimator for a population parameter of interest, the bootstrap enables 
inferences about that parameter. In the case of simple situations the bootstrap is very 
simple in form, but more complex situations can be dealt with. The bootstrap can be 
modified in order to produce a predictive distribution (and hence, if required, 
prediction intervals). 

It is predictive distributions that are generally of prime interest to insurers (because 
they pay the outcome of the process, not its mean). The bootstrap has become quite 
popular in reserving in recent years, but it’s necessary to use the bootstrap with 
caution. 

The bootstrap does not require the user to assume a distribution for the data. Instead, 
sampling distributions are obtained by resampling the data.  

However, the bootstrap certainly does not avoid the need for assumptions, nor for 
checking those assumptions. The bootstrap is far from a cure-all. It suffers from 
essentially the same problems as finding predictive distributions and sampling 
distributions of statistics by any other means. These problems are exacerbated by the 
time-series nature of the forecasting problem – because reserving requires prediction 
into never-before-observed calendar periods, model inadequacy in the calendar year 
direction becomes a critical problem. In particular, the most popular actuarial 
techniques – those most often used with the bootstrap – don’t have any parameters in 
that direction, and are frequently mis-specified with respect to the behaviour against 
calendar time..  

Further, commonly used versions of the bootstrap can be sensitive to 
overparameterization – and this is a common problem with standard techniques. 

In this paper, we describe these common problems in using the bootstrap and how to 
spot them. 

A basic bootstrap introduction 

The bootstrap was devised by Efron (1979), growing out of earlier work on the 
jackknife. He further developed it in a book (Efron, 1982), and various other papers. 
These days there are numerous books relating to the bootstrap, such as Efron and 
Tibshirani (1994). A good introduction to the basic bootstrap may be found in Moore 
et al. (2003); it can be obtained online. 

The original form of the bootstrap is where the data itself is resampled, in order to get 
an approximation to the sampling distribution of some statistic of interest, in order to 
make inference about a corresponding population statistic. 
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For example, in the context of a simple model E(Xi) = µ, i = 1, 2, … , n, where the 
X’s assumed to be independent, the population statistic of interest is the mean, µ, and 
the sampling statistic of interest would typically be the sample mean,⎯x .  
 
Consequently, we estimate the population mean by the sample mean (µ̂ =⎯x )  – but 
how good is that estimate? If we were to collect many samples, how far would the 
sample means typically be from the population mean? 
 
While that question could be answered if we could directly take many samples from 
the population, typically we cannot resample the original population again. If we 
assume a distribution, we could infer the behaviour of the sample mean from the 
assumed distribution, and then check that the sample could reasonably have come 
from the assumed distribution.  
 
(Note that rather than needing to assume an entire distribution, if the population 
variance were assumed known, we could compute the variance of the sample mean, 
and given a large enough sample, we might consider applying the central limit 
theorem (CLT) in order to produce an approximate interval for the population 
parameter, without further assumptions about the distributional form. There are many 
issues that arise. One such issue is whether or not the sample is large enough – the 
number of observations per parameter in reserving is often quite small. Indeed, many 
common techniques have some parameters whose estimates are based on only a single 
observation! Another issue is that to be able to apply the CLT we assumed a variance 
– if instead we estimate the variance, then the inference about the mean depends on 
the distribution again. As the sample sizes become large enough that we may apply 
Slutzky’s theorem, then for example a t-statistic is asymptotically normal, even 
though in small samples the t-statistic only has a t-distribution if the data were 
normal. Lastly, and perhaps most importantly when we want a predictive distribution, 
the CLT usually cannot help.) 
 
In the case of bootstrapping, the sample is itself resampled, and then from that, 
inferences about the behaviour of samples from the population are made on the basis 
of those resamples. The empirical distribution of the original sample is taken as the 
best estimate of the population distribution. 
 
In the simple example above, we repeatedly draw samples of size n (with 
replacement) from the original sample, and compute the distribution of the statistic 
(the sample mean) of each resample. Not all of the original sample will be present in 
the resample – on average a little under 2/3 of the original observations will appear, 
and the rest will be repetitions of values already in the sample. A few observations 
may appear more than twice. 
 
The standard error, the bias and even the distribution of an estimator about the 
population value can be approximated using these resamples, by replacing the 
population distribution, F by the empirical distribution Fn. 
 
For more complex models, this direct resampling approach may not be suitable. For 
example, in a regression model, there is a difficulty with resampling the responses 
directly, since they will typically have different means. 
 



For regression models, one approach is to keep all the predictors with each 
observation, and sample them together. That is, if X is a matrix of predictors 
(sometimes called a design matrix) and y is a data-vector, for the multiple regression 
model Y = X β + ε , then the rows of the augmented design matrix [X|y] are 
resampled. (This is particularly useful when the X’s are thought of as random.) 
 
A similar approach can be used when computing multivariate statistics, such as 
correlations. 
 
Another approach is to resample the residuals from the model. The residuals are 
estimates of the error term, and in many models the errors (or in some cases, scaled 
errors) at least share a common mean and variance. The bootstrap in this case assumes 
more than that – they should have a common distribution (in some applications this 
assumption is violated).  
 
In this case (with the assumption of equal variance), after fitting the model and 
estimating the parameters, the residuals from the model are computed: ei = yi – ŷ i , 
and then the residuals are resampled as if they were the data.  
 
Then a new sample is generated from the resampled residuals by adding them to the 
fitted values, and the model is fitted to the new bootstrap sample. The procedure is 
repeated many times.  
 
Forms of this residual resampling bootstrap have been used almost exclusively in 
reserving. 
 
If the model is correct, appropriately implemented residual resampling works. If it is 
incorrect, the resampling scheme will be affected by it, some more than others, though 
in general the size of the difference in predicted variance is small. More sophisticated 
versions of this kind of resampling scheme, such as the second bootstrap procedure in 
Pinheiro et al. (2003) can reduce the impact of model misspecification when the 
prediction is, as is common for regression models, within the range of the data.  
However, the underlying problem of amplification of unfitted calendar year effects 
remains, as we shall see. 
 
For the examples in this paper we use a slightly augmented version of  Sampler 2 
given in Pinheiro et al – the prediction errors are added to the predictions to yield 
bootstrap-simulated predictive values, so that we can directly find the proportion of 
the bootstrap predictive distribution below the actual values in one-step-ahead 
predictions. 
 
In the case of reserving, the special structure of the problem means that while often 
we predict inside the range of observed accident years, and usually also within the 
range of observed development years, we are always projecting outside the range of 
observed calendar years – precisely the direction in which the models corresponding 
to most standard techniques are inadequate.  
 
As a number of authors have noted, the chain ladder models the data using a two-way 
cross-classification scheme (that is, like a two-way main-effects ANOVA model in a 
log-link). As discussed in Barnett et al. (2005), this is an unsuitable approach in the 



accident and development direction, but the issues in the calendar direction are even 
more problematic. Even the more sophisticated approaches to residual resampling can 
fail on the reserving problem if the model is unsuitable.  
 
 
Diagnostic displays for a bootstrapped chain ladder 
 
Many common regression diagnostics for model adequacy relate to analysis of 
residuals, particularly residual plots. In many cases these work very well for 
examining many aspects of model adequacy. When it comes to assessing predictive 
ability, the focus should, where possible, shift to examining the ability to predict data 
not used in the estimation. In a regression context, a subset of the data is held aside 
and predicted from the remainder. Generally the subset is selected at random from the 
original data. However, in our case, we cannot completely ignore the time-series 
structure and the fact that we’re predicting outside the range of the data. Our 
prediction is always of future calendar time. Consequently the subsets that can be held 
aside and assessed for predictive ability are those at the most recent time periods. 
 
This is common in analysis of time series. For example, models are sometimes 
selected so as to minimize one-step-ahead prediction errors. See, for example, 
Chatfield (2000). 
 
 
Out of sample predictive testing 
 
The critical question for a model being used for prediction is whether the estimated 
model can predict outside the sample used in the estimation. Since the triangle is a 
time series, where a new diagonal is observed each calendar period, prediction (unlike 
predictions for a model without a time dimension) is of calendar periods after the 
observed data. To do out-of-sample tests of predictions, it is therefore important to 
retain a subset of the most recent calendar periods of observations for post-sample 
predictive testing. We refer to this post-sample-predictive testing as model validation 
(note that some other authors use the term to mean various other things, often related 
to checking the usefulness or appropriateness of a model). 
 
Imagine we have data up to time t. We use only data up to time t–k to estimate the 
model and predict the next k periods (in our case, calendar periods), so that we can 
compare the ability of the model to predict actual observations not used in the 
estimation. We can, for example, compute the prediction errors (or validation 
residuals), the difference between observed and predicted in the validation period. If 
these prediction errors are divided by the predictive standard error, the resulting 
standardized validation residuals can be plotted against time (calendar period most 
importantly, and also accident and development period), and against predicted values, 
(as well as against any other likely predictor), in similar fashion to ordinary residual 
plots. Indeed, the within-sample residuals and “post-sample” predictive errors 
(validation residuals) can be combined into a single display. 
 
One step ahead prediction errors are related to validation residuals, but at each 
calendar time step only the next calendar period is predicted; then the next period of 
data is brought in and another period is predicted. 



 
 In the case of ratio models such as the chain-ladder, prediction is only possible within 
the range of accident and development years used in estimation, so out of sample 
prediction cannot be done for all observations left out of the estimation. The use of 
one step ahead prediction errors maximizes the number of out-of-sample cases that 
have predictions. Further, when reserving, the liability for the next calendar period is 
generally a large portion of the total liability, and the liability estimated will typically 
be updated once it is observed; this makes one-step-ahead prediction errors a 
particularly useful criterion for model evaluation when dealing with ratio models like 
the chain ladder. 
 
For a discussion of the use of out of sample prediction errors and in particular one-
step-ahead prediction errors in time series, see Chatfield (2000), chapter 6. 
 
For many models, the patterns in residual plots when compared with the patterns in 
validation residuals or one step ahead prediction errors appear quite similar. In this 
circumstance, ordinary residual plots will generally be sufficient for identifying model 
inadequacy.  
 
Critically, in the case of the Poisson and quasi-Poisson GLM that reproduce the chain 
ladder, the prediction errors and the residuals do show different patterns. 
 
Example 1: 
See Appendix A. This data was used in Mack (1994). The data are incurred losses for 
automatic facultative business in general liability, taken from the Reinsurance 
Association of America's Historical Loss Development Study. 
 
If we fit a quasi- (or overdispersed) Poisson GLM and plot standardized residuals 
against fitted values, the plot appears to show little pattern: 
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However, if we plot one step ahead prediction errors (scaled by dividing the 
prediction errors by µ^ 

½ ) against predicted values, we do see a distinct pattern of 
mostly positive prediction errors for small predictions with a downward trend toward 
more negative prediction errors for large predictions: 
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Prediction errors above have not been standardized to have unit variance. The 
underlying quasi-Poisson scale parameter would have a different estimate for each 
calendar year prediction; it was felt that the additional noise from separate scaling 
would not improve the ability of this diagnostic to show model deficiencies. On the 
other hand, using a common estimate across all the calendar periods would simply 
alter the scale on the right hand side without changing the plot at all, and has the 
disadvantage that for many predictions you’d have to scale them using “future” 
information. On the whole it seems prudent to avoid the scaling issue for this display, 
but as a diagnostic tool, it’s not a major issue. 
 
This problem of quite different patterns for prediction errors and residuals does not 
tend to occur with the Mack formulation of the chain ladder, where ordinary residuals 
are sufficient to identify this problem: 
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As noted in Barnett and Zehnwirth (2000), this is caused by a simple failure of the 
ratio assumption – it is not true that E(Y|X) = βX, as would be true of any model 
where the next cumulative is assumed to be (on average) a multiple of the previous 
one. (For this data, the relationship between Y and X does not go through the origin.) 
 



The above plot is against cumulatives because in the Mack formulation, that’s what is 
being predicted. For comparison, here are the OD Poisson GLM residuals vs 
cumulative fitted rather than incremental fitted: 
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Why is the problem obvious in the residuals for the Mack version of the chain ladder 
model, but not in the plots of GLM residuals vs fitted (either incremental or 
cumulative)? Even though the two models share the same prediction function, the 
fitted values of the two models are different. 
 
On the cumulative scale, if X is the most recent cumulative (on the last diagonal) and 
Y is the next one, both models have the prediction-function E(Y|X) = βX.  
 
Within the data, the Mack model uses the same form for the fit – E(Y|X) = βX, but the 
GLM does not – you can write it as E(Y) = βE(X), which seems similar enough that it 
might be imagined it would not make much difference, but the right hand side 
involves “future” values not available to predictions. This allows the fit to “shift” 
itself to compensate, so you can’t see the problem in the fits. However, the out-of-
sample prediction function is the same as for the Mack formulation, and so the 
predictions from the GLM suffers from exactly the same problem – once you forecast 
future values, you’re assuming E(Y|X) = βX for the future – and it does not work. 
 
Adequate model assessment of ODP GLMs therefore requires the use of some form 
of out-of-sample prediction, and because of the structure of the chain ladder, this 
assessment seems to be best done with one-step-ahead prediction errors. For many 
other models, such as the Mack model, this would be useful but not as critical, since 
we can identify the problem even in the residuals. 
 
 
Assessing bootstrap predictive distributions  
 
When calculating predictive distributions with the bootstrap, we can in similar fashion 
make plots of standardized prediction errors against predicted values and against 
calendar years. Of course, since the prediction errors are the same, the only change 
would be a difference in the amount by which each prediction error is scaled (since 



we have bootstrap standard errors in place of asymptotic standard errors from an 
assumed model); the broad pattern will not change, however, so the plot based on 
asymptotic results are useful prior to performing the bootstrap. 
 
Since we can produce the entire predictive distribution via the bootstrap, we can 
evaluate the percentiles of the omitted observations from their bootstrapped predictive 
distributions – if the model is suitable, the data should be reasonably close to 
“random” percentiles from the predictive distribution. This further information will be 
of particular interest for the most recent calendar periods (since the ability of the 
model to predict recent periods gives our best available indication if there is any hope 
for it in the immediate future – if your model cannot predict last year you cannot have 
a great deal of confidence in its ability to predict next year). 
 
We could look at a visual diagnostic, such as the set of predictive distributions with 
the position of each value marked on it, though it may be desirable to look at all of 
them together on a single plot, if the scale can be rendered so that enough detail can 
be gleaned from each individual component. It may be necessary to “summarize” the 
distribution somewhat in order to see where the values lie (for example, indicating 
10th, 25th, 50th, 75th and 90th percentiles, rather than showing the entire bootstrap 
density). In order to more readily compare values it may help to standardize by 
subtracting the mean and dividing by the standard deviation, though in many cases, if 
the means don’t vary over too many standard deviations, simply looking at the 
original predicted values on (whether on the original scale or on a log scale) may be 
sufficient – sometimes a little judgement is required as to which plot will be most 
informative. 
 
In some circumstances it might also be useful to obtain a single summary of the 
indicated lack of ‘predictive fit’. If the data are "random" percentiles from their 
predictive distributions, the proportion of the predictive distribution below which each 
observation falls should be uniform. Of primary interest would be (i) substantial bias 
in the predictive distribution (both up and down bias are problematic for the insurer), 
and (ii) substantial error in the variability of the predictive distribution. The first will 
tend to yield percentiles that are too high or too low, which the second will either 
yield percentiles that are both too high and too low (if the predictive variance is 
underestimated), or percentiles that are clustered toward the centre (if it is 
overestimated). If pi  is the proportion of the predictive distribution below the 
observed value, then qi = 2| pi – ½ | should also be uniform, but if there are too many 
extreme percentiles (either from upward or downward bias, or from underestimating 
of the predictive variances), the qi values will tend to be too large, while if there are 
too few extreme percentiles the qi values will tend to be too small. There are various 
ways of combining the qi into a single diagnostic measure. Once such would be to 
note that if the q’s are uniform, then  2.exp(–{1–qi}) has a chi-square distribution with 
2d.f. (with large values again indicating an excess of extreme percentiles). Several of 
these (k, say) may be added if a single statistic is desired and compared with a χ2

2k 
distribution. Unusually large values would be of particular interest, though unusually 
small values would also be important. If required this could be used as a formal 
hypothesis test, but it is generally of greater value as a diagnostic summary of the 
overall tendency to extreme percentiles. 
 
 



Example 2 
 
ABC data. This is Worker's Compensation data for a large company. This data was 
analyzed in some detail in Barnett and Zehnwirth (2000). See appendix B. 
 
In this example we actually use the bootstrap predictions discussed in the basic 
bootstrap introduction above, based on the second algorithm from Pinheiro et al 
(2003). Below are the predictive distributions for the first two values (after DY0) for 
the last diagonal, for a ODP GLM fitted to the data prior to the final calendar year, 
which was omitted. The brown arrows mark the actual observation that the predictive 
distribution is attempting to predict. 
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  Delay 1      Delay 2 
 

The arrow marks the actual observation for that delay; for the two distributions 
shown, the observed value sits fairly high. For a single observation, this might 
happens by chance, even with an appropriate model, of course. 
 
The runoff decreases sharply for this triangle, so most of this information in the 
histograms would be lost if we looked at them on a single plot. Consequently, for a 
more detailed examination, the bootstrap results are reduced to a five-number 
summary of the percentiles:  
 



 

ABC  Predictive distribution for last diagonal – box and whisker plots 
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As can be seen, the actual payments for the first seven development periods are all 
very high, but it’s a little hard to see the details in the last few periods. Let’s look at 
them on the log-scale: 
 

Bootstrap Pred. Dist & Obs vs DY

10000

100000

1000000

0 1 2 3 4 5 6 7 8 9 10
DY

90%
75%
50%
25%
10%
Obs

 
 



Now we can see that in all cases the observations sit above the median of the 
predictive distribution, and all but the last two are above the upper quartile. 
 
Below is a summary table of the bootstrap distribution for the final calendar year: 
 
ABC:    Bootstrap Predictive distributions for last calendar year 
DY Actual 10% 25% 50% 75% 90% % ≤obs 

0 496200             
1 590400 509620 525430 542150 562070 583270 93.9 
2 375400 306580 315890 326600 337060 351080 99.6 
3 190400 148750 155240 161520 169110 176290 98.9 
4 105600 77760 81850 86220 91330 97340 99.2 
5 82400 51050 54270 57740 61590 65730 100 
6 51000 37440 40300 43360 46950 51380 89.3 
7 38000 25490 27940 30770 33680 37110 92 
8 27400 19430 21920 24540 27840 30970 72.9 
9 18000 11930 14210 16460 19630 23450 63.9 

10 12200             
 
So what’s going on? Why is this predicting so badly? 
 
Well, we can see via one-step-ahead prediction errors that there’s a problem with the 
assumption of no calendar period trend; alternatively, as we noted earlier, we can look 
at residuals from a Mack-style model, and get a similar impression: 
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We can see a strong trend-change. Consequently, predictions of the last calendar year 
will be too low. One major difficulty with the common use of the chain ladder in the 
absence of careful consideration of the remaining calendar period trend is that there is 
no opportunity to apply proper judgement of the future trends in this direction, 
because the practitioner lacks information about the past behaviour for a context in 
which to even seek information that would inform scenarios relating to the future 
behaviour. 
 



Example 3 – LR high 
The data for this example is available in Appendix C. As we have seen, we can look at 
diagnostics and assess before we attempt to produce bootstrap prediction intervals 
whether we should proceed. 
 
Here are the standardized residuals vs calendar years from a Mack-style Chain ladder 
fit. As you can see, there’s a lot of structure.  
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There’s similar structure in the overdispersed Poisson GLM formulation of the chain 
ladder - residuals show there are strong trend changes in the calendar year direction: 

 
 
However, as we described before, this residual plot gives the incorrect impression that 
the GLM is underpredicting. This impression is incorrect, as we see by looking at the 
validation (one step ahead predictions) for the last year: 
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It’s a little hard to see detail over on the right, so let’s look at the same plot on the log 
scale: 

 Predicted and Actual (CY:90) vs DY.
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The Mack-model residual plot gave a good indication of the predictive performance 
of the chain ladder (bootstrapped or not) for both the Mack model and the quasi- 
(overdispersed) Poisson GLM. It’s always a good idea to validate the last calendar 
year (look at one-step-ahead prediction errors), but a quick approximation of the 
performance is usually given by examining residuals from a Mack-chain ladder 
model. 
 
A further problem with the GLM is revealed by the plot of residuals vs development 
year: 
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The assumed variance function does not reflect the data. 
 
 
Example 4 
The next example has been widely used in the literature relating to the chain ladder. 
Indeed, Pinherio et al. (2003) referred to it as a “benchmark for claims reserving 
models”. The data come from Taylor and Ashe (1983).  See Appendix D. 
 
Here are the bootstrap predictive means and s.d.s for the last diagonal (i.e. with that 
data not used in the estimation) for a quasi-Poisson GLM, and the actual payments for 
comparison: 
 
DY: 1 2 3 4 5 6 7 8 

CL pred 931994 1000686 1115232 482991 325851 443060 231680 309629 
mean: 958887 1021227 1114169 490137 328453 452636 242346 327365 
stdev: 452285 331706 318026 195225 156289 200080 152170 227644 
actual: 986608 1443370 1063269 705960 470639 206286 280405 425046 

 
Firstly, there is an apparent bias in the bootstrap means. The chain ladder predictions 
sit below the bootstrap means, indicating a bias. Since, the ML for a Poisson is 
unbiased, if the model is correct, these predictions should be unbiased. This doesn’t 
necessarily indicate a bad predictive model, but is there anything going on?  
 
In fact there is, and we can see problem can be seen in residual plots.  
 
Here is a plot of the residuals versus calendar year from a Mack type fit (this is done 
first because it’s the easiest to obtain – it takes only a couple of clicks in ICRFS-
ELRF). 
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Strong calendar period effects in the last few years. The existence of a calendar period 
effect was already noted by Taylor and Ashe in 1983 (who included the late calendar 
year effect in some of their models), but it has been ignored by almost every author to 
consider this data since. If the trend were to continue for next year, the forecasts may 
be quite wrong. If we didn’t examine the residuals, we may not even be aware this 
problem is present. 
 
Exactly the same effect appears when fitting a quasi-Poisson two-way cross 
classification with log-link: 
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There’s little advantage in not examining Mack residuals before fitting a quasi-
Poisson GLM – the residuals are easier to produce, and the information in the plot of 
residuals vs fitted has more information about the predictive ability of the model. 
 



 
Some other considerations  
 
All chain-ladder reproducing models (including both the quasi-Poisson GLM and the 
Mack model) must assume that the variance of the losses is proportional to the mean 
(or they will necessarily fail to reproduce the chain ladder). This assumption is found 
to be rarely tenable in practice – and for an obvious reason. While it can make sense 
with claim counts – for example, if the counts are higher on average they also tend to 
be more spread but often with lower coefficient of variation. If they happen to be 
Poisson-distributed (a strong assumption), the variance will be specifically 
proportional to the mean. However, heterogeneity or dependence in claim 
probabilities can make it untenable even for claim numbers. But with claim payments, 
the amount paid on each claim is itself a random variable, not a constant, and anything 
that makes the claim payments variable will make the variation increase faster than 
the mean. Simple variation in claim size (such as a constant percentage change, 
whether due to inflation effects or change in mix of business or any number of other 
effects) will make the variance increase as the square of the mean, while claim size 
effects that vary from policy to policy can make it increase still faster. Dependence in 
claim size effects across policies can make it increase faster again. Consequently the 
chain ladder assumption of variance proportional to mean must be viewed with a great 
deal of caution, and carefully checked. 
 
The chain ladder model is overparameterized. It assumes, for example, that there is no 
information in nearby development periods about the level of payments in a given 
development, yet the development generally follows a fairly smooth trend – indicating 
that there is information there, and that the trend could be described with few 
parameters. This overparameterization leads to unstable forecasts. 
 
Finally, in respect of the bootstrap, the sample statistic may in some circumstances be 
very inefficient as an estimator of the corresponding population quantities. It would be 
prudent to check that it makes sense to use the estimator you have in mind for 
distributions that would plausibly describe the data.  
 
 
Conclusions  
 
The use of the bootstrap does not remove the need to check assumptions relating to 
the appropriateness of the model. Indeed, it is clear that there’s a critical need to check 
the assumptions. 
 
The bootstrap cannot get around the facts that chain-ladder type models have no 
simple descriptors of features in the data. Note further for triangles ABC and LR-High 
there is so much remaining structure in the residuals –the bootstrap cannot get around 
this.  
 
If you do fit a quasi-Poisson GLM, it’s important to check the one-step-ahead 
prediction errors in order to see how it performs as a predictive model – the residuals 
against fitted values don’t show you the problems. 
 



In any case, it should be looked at before bootstrapping a model, and once a bootstrap 
has been done, you should also validate at least the last year - examine whether the 
actual values from the last calendar year could plausibly have come from the 
predictive distribution standing a year earlier. 
 
If it is the predictive behaviour that is of interest, prediction errors are appropriate 
tools to use in standard diagnostics, and they can be analyzed in the same way as 
residuals are for models where prediction is within the range of the data. 
 
Checking the model when bootstrapping is achieved in much the same way as it is for 
any other model – via diagnostics – but they must be diagnostics selected with a clear 
understanding of the problem, the model and the way in which the bootstrap works..  
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Appendix A 
 

Incurred Loss Array for the Mack (RAA AFG) data 

  Development Year  

  0 1 2 3 4 5 6 7 8 9 

1981 5012 8269 10907 11805 13539 16181 18009 18608 18662 18834 

1982 106 4285 5396 10666 13782 15599 15496 16169 16704  

1983 3410 8992 13873 16141 18735 22214 22863 23466   

1984 5655 11555 15766 21266 23425 26083 27067    

1985 1092 9565 15836 22169 25955 26180     

1986 1513 6445 11702 12935 15852      

1987 557 4020 10946 12314       

1988 1351 6947 13112        

1989 3133 5395         

 

 

 

Acci-

dent 

Year 

1990 2063          

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 



Appendix B 
 

ABC - Incremental paid losses triangle and exposures 

 0 1 2 3 4 5 6 7 8 9 10 

1977 153638 188412 134534 87456 60348 42404 31238 21252 16622 14440 12200

1978 178536 226412 158894 104686 71448 47990 35576 24818 22662 18000

1979 210172 259168 188388 123074 83380 56086 38496 33768 27400

1980 211448 253482 183370 131040 78994 60232 45568 38000

1981 219810 266304 194650 120098 87582 62750 51000

1982 205654 252746 177506 129522 96786 82400

1983 197716 255408 194648 142328 105600

1984 239784 329242 264802 190400

1985 326304 471744 375400

1986 420778 590400

1987 496200

 

Accident 
Year 

1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 

Exposure 2.2 2.4 2.2 2.0 1.9 1.6 1.6 1.8 2.2 2.5 2.6 

 
Note that the exposures were not used in the chain ladder fits described here. (Since 
there is already a parameter to each accident year, there is little point in any case.) 
 
 
 
 
 
 
 
 
 
 
 
 
 



Appendix C 
 

LR high data, incremental payments, development years 0-8 
 

 0 1 2 3 4 5 6 7 8 
1974 668 4,270 6,530 6,970 8,215 11,428 6,640 1,633 990 
1975 775 6,248 7,193 9,250 13,745 14,425 3,408 1,280 608 
1976 925 5,935 11,343 15,015 16,215 10,288 3,215 1,613 575 
1977 1,443 8,250 14,338 18,375 17,005 7,370 4,203 3,158 458 
1978 1,273 10,023 18,873 22,878 14,940 6,058 3,093 965 895 
1979 1,575 12,833 26,523 19,333 12,465 8,600 3,368 768 263 
1980 2,695 17,470 23,630 21,433 14,290 5,190 2,343 1,655 313 
1981 4,115 19,330 21,640 21,545 11,503 5,308 2,278 1,745 343 
1982 4,385 23,755 23,420 18,083 8,758 4,928 1,825 415 225 
1983 4,993 21,578 25,968 19,998 11,935 6,353 2,793 313 275 
1984 5,410 23,435 25,028 19,045 13,183 5,220 1,055 373  
1985 4,805 22,543 26,045 17,828 11,235 5,870 1,823   
1986 4,905 27,728 37,040 26,728 14,753 3,818    
1987 5,823 39,393 50,033 34,635 15,190     
1988 8,358 53,658 68,120 35,373      
1989 9,618 75,810 62,653       
1990 15,225 68,255        
1991 13,628         

 
 

LR high data, development years 9-17 
 

 9 10 11 12 13 14 15 16 17 
1974 483 148 50 63 0 30 0 0 0 
1975 123 553 45 168 0 0 0 80  
1976 328 220 240 18 20 45 0   
1977 263 133 5 0 125 0    
1978 728 283 -137 45 53     
1979 325 148 48 65      
1980 825 50 13       
1981 98 28        
1982 153         

 
Accident 
Year 1974 1975 1976 1977 1978 1979 1980 1981 1982 
Exposure 
(000s) 11.00 11.00 11.00 12.00 12.00 12.00 12.00 12.00 11.00 

 
Accident 
Year 1983 1984 1985 1986 1987 1988 1989 1990 1991 
Exposure 
(000s) 11.00 11.00 11.00 12.00 13.00 14.00 14.00 14.00 13.00 



Appendix D 
 

Taylor-Ashe data. Incremental payments 
 

 0 1 2 3 4 5 6 7 8 9 
1972 357848 766940 610542 482940 527326 574398 146342 139950 227229 67948 
1973 352118 884021 933894 1183289 445745 320996 527804 266172 425046  
1974 290507 1001799 926219 1016654 750816 146923 495992 280405   
1975 310608 1108250 776189 1562400 272482 352053 206286    
1976 443160 693190 991983 769488 504851 470639     
1977 396132 937085 847498 805037 705960      
1978 440832 847631 1131398 1063269       
1979 359480 1061648 1443370        
1980 376686 986608         
1981 344014          

 
 

Taylor-Ashe data. Number of claims finalized 
 

 0 1 2 3 4 5 6 7 8 9 
1972 40 124 157 93 141 22 14 10 3 2 
1973 37 186 130 239 61 26 23 6 6  
1974 35 158 243 153 48 26 14 5   
1975 41 155 218 100 67 17 6    
1976 30 187 166 120 55 13     
1977 33 121 204 87 37      
1978 32 115 146 103       
1979 43 111 83        
1980 17 92         
1981 22          

 
 
Note that Taylor and Ashe (1983) give the data as payments per claim finalized and 
number of claims finalized. The original payments have been reconstructed. Note also 
that the number of claims finalized have not been used in the analysis here, the table is 
given for the sake of completeness. 
 
 
 




